Vol. 118

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues

Ultra-Wideband Reflectarray Antenna Using Two Layers Square-Loop Frequency Selective Surfaces

By Ali Mohammad and Ali Hassan
Progress In Electromagnetics Research C, Vol. 118, 43-59, 2022


This paper aims to design an ultra-wideband reflectarray using True Time Delay technique that depends on compensate for the path differences of the electromagnetic waves between the feed and reflectarray surface, and reradiate them in-phase as a planar wave. The reflectarray surface is composed of numerous radiating elements. The reflecting surface is divided into several concentric annular zones; each of them has equal path delays of the electromagnetic waves. The radiating elements in each zone are implemented with two-layer square-loop type Frequency Selective Surface (FSS) structures. A TTD reflectarray with a diameter of 250 mm fed with a centered ku-band pyramidal horn antenna is studied and designed and fabricated to operate at the center frequency of 15 GHz. The proposed reflectarray provides a gain of 26.42±2 dB in the 12-18 GHz range achieving a fractional bandwidth of 40%. The simulated radiation patterns are stable with cross-polarization level below -40 dB and side-lobes level below -15 dB over the entire operating frequency range. The simulated phase efficiency is about 56% at the center frequency of 15 GHz.


Ali Mohammad and Ali Hassan, "Ultra-Wideband Reflectarray Antenna Using Two Layers Square-Loop Frequency Selective Surfaces," Progress In Electromagnetics Research C, Vol. 118, 43-59, 2022.


    1. Huang, J. and J. A. Encinar, Reflectarray Antennas, John Wiley & Sons, Inc., 2008.

    2. Munk, B., Finite Antenna Arrays and FSS, Wiley, New York, 2003.

    3. Nayeri, P., F. Yang, and A. Z. Elsherbeni, Reflectarray Antennas: Theory, Designs, and Applications, John Wiley & Sons, Inc., 2018.

    4. Narayan, S., B. Sangeetha, and R. M. Jha, Frequency Selective Surfaces Based High Performance Microstrip Antenna, Springer, Singapore, 2016.

    5. Munk, B., Frequency Selective Surfaces, John Wiley & Sons, Inc., New York, 2000.

    6. Liang, L. and S. V. Hum, "Design of a UWB reflectarray as an impedance surface using bessel filters," IEEE Trans. Antennas Propagat., Vol. 64, No. 10, 4242-4255, Oct. 2016.

    7. Bodur, H., S. Unaldi, S. Cimen, and G. Cakir, "A novel reflectarray antenna combined with double layer FSS for RCS reduction," Proc. 25th Telecommun. Forum (TELFOR), 1-3, Nov. 2017.

    8. Momeni Hasan Abadi, S. M. A., K. Ghaemi, and N. Behdad, "Ultra-wideband, true-time-delay reflectarray antennas using ground-plane-backed, miniaturized-element frequency selective surfaces," IEEE Trans. Antennas Propagat., Vol. 63, No. 2, 534-541, Feb. 2015.

    9. Li, H., B. Z. Wang, G. Zheng, and W. Shao, "A Reflectarray antenna backed on FSS for low RCS and high radiation performances," Progress In Electromagnetics Research C, Vol. 15, 145-155, 2010.

    10. Fakharian, M. M., P. Rezaei, and A. A. Orouji, "A Reflectarray based on the folded SIR patch-slot con guration backed on FSS for low RCS," Progress In Electromagnetics Research Letters, Vol. 47, 119-124, 2014.

    11. Zhong, X., H.-X. Xu, L. Chen, W. Li, H. Wang, and X. W. Shi, "An FSS-backed broadband phase-shifting surface array with multimode operation," IEEE Trans. Antennas Propag., Vol. 67, No. 9, 5974-5989, Sep. 2019.

    12. Wu, G., S. Qu, Y. Wang, and S. Yang, "Nonuniform FSS-backed reflectarray with synthesized phase and amplitude distribution," IEEE Trans. Antennas Propag., Vol. 66, No. 12, 6883-6892, Dec. 2018.

    13. Lingasamy, V., M. Gulam Nabi Alsath, K. T. Selvan, and R. Jyoti, "A wideband, single layer reflectarray antenna with cross loop and square ring slots loaded patch elements," International Journal of Microwave and Wireless Technologies, Vol. 11, No. 7, 703-710, Sep. 2019.

    14. Edalati, A. and K. Sarabandi, "Wideband reflectarray antenna based on miniaturized element frequency selective surfaces," Proc. Eur. Conf. Antennas Propag. (EuCAP2012), Vol. 362364, 2012.

    15. Edalati, A. and K. Sarabandi, "Reflectarray antenna based on grounded loop-wire miniaturised- element frequency selective surfaces," IET. Microw. Antennas Propag., Vol. 8, No. 12, 973-979, Sep. 2014.

    16. Nourinia, J., et al., "RCS reduction of reflectarray antenna backed with sub-wavelength frequency selective surface," 2019 27th Iranian Conference on Electrical Engineering (ICEE), 1627-1631, IEEE, 2019.

    17. Momeni Hasan Abadi, S. M. A. and N. Behdad, "Design of wideband, FSS-based multi-beam antennas using the effective medium approach," IEEE Trans. Antennas Propag., Vol. 62, No. 11, 5557-5564, Nov. 2014.

    18. Carrasco, E., J. A. Encinar, and M. Barba, "Bandwidth improvement in large reflectarrays by using true-time delay," IEEE Trans. Antennas Propagat., Vol. 56, No. 8, 24962503, Aug. 2008.

    19. Momeni Hasan Abadi, M. A. and N. Behdad, "Broadband true-time-delay circularly polarized reflectarray with linearly polarized feed," IEEE Trans. Antennas Propag., Vol. 64, No. 11, 4891-4896, Nov. 2016.

    20. Delafkar, H., A. Pirhadi, and S. Karimian, "A new model for design of wideband radiating elements for reflectarray antenna," 2017 IEEE Asia Pacific Microwave Conference (APMC), 73-76, IEEE, 2017.

    21. Legay, H., D. Bresciani, E. Labiole, R. Chiniard, and R. Gillard, "A multi facets composite panel reflectarray antenna for a space contoured beam antenna in Ku band," Progress In Electromagnetics Research B, Vol. 54, 1-26, 2013.

    22. Stutzman, W. L. and G. A. Thiele, Antenna Theory and Design, John Wiley & Sons, Inc., 2012.

    23. Yu, A., F. Yang, A. Z. Elsherbeni, J. Huang, and Y. Rahmat-Samii, "Aperture efficiency analysis of reflectarray antennas," Microw. Opt. Technol. Lett., Vol. 52, No. 2, 364-372, Feb. 2010.

    24. Pozar, D. M., Microwave Engineering, John Wiley & Sons, Inc., 2009.

    25. Xu, Y. and M. He, "Design of multilayer frequency-selective surfaces by equivalent circuit method and basic building blocks," International Journal of Antennas and Propagation, 1-13, 2019.