Vol. 117

Latest Volume
All Volumes
All Issues
2021-11-16

Numerical Analysis of a ITO Based Circularly Polarized Optically Transparent THz Antenna Employing Characteristic Mode Analysis

By Muhammad Asad Rahman, Md. Sarwar Uddin Chowdhury, Md. Azad Hossain, and Ahmed Toaha Mobashsher
Progress In Electromagnetics Research C, Vol. 117, 1-16, 2021
doi:10.2528/PIERC21081301

Abstract

An optically transparent circularly polarized indium tin oxide based antenna having operability in THz region is proposed in this paper. An E-shaped slot and an I-shaped slot are embedded into an E-shaped radiating E-shaped radiating patch modeled by ITO and conductive carbon nanotube (CNT) on a polyimide substrate to obtain circular polarization. The unequal parallel slits of the E-shaped patch with an E-shaped slot lead to introduce two orthogonal modes, and hence circular polarization is achieved. Besides, integration of a I-shaped slot also helps to create the difference in magnitude of current distribution between the two working modes to get better axial ratio. Due to the high resistivity of indium tin oxide thin film, the patch of the antenna is covered with highly CNT film which improves the overall performance of the antenna. To overcome the limitations of the traditional design process, characteristic mode analysis is carried out which helps to realize and analyze circular polarization generation mechanism effectively. The proposed antenna shows a wide 3-dB axial ratio bandwidth of 9.66%. A reasonable gain of 2.61 dBic is obtained at 1.11 THz with excellent radiation performance. Wide 3-dB axial ratio bandwidth with reasonable gain makes this light weight transparent small-antenna competent for wireless and satellites applications.

Citation


Muhammad Asad Rahman, Md. Sarwar Uddin Chowdhury, Md. Azad Hossain, and Ahmed Toaha Mobashsher, "Numerical Analysis of a ITO Based Circularly Polarized Optically Transparent THz Antenna Employing Characteristic Mode Analysis," Progress In Electromagnetics Research C, Vol. 117, 1-16, 2021.
doi:10.2528/PIERC21081301
http://jpier.org/PIERC/pier.php?paper=21081301

References


    1. He, Y., Y. Chen, L. Zhang, S.-W. Wong, and Z. N. Chen, "An overview of terahertz antennas," China Communications, No. 17, 124-165, Jul. 2020.

    2. Jamshed, M. A., A. Nauman, M. A. B. Abbasi, and S. W. Kim, "Antenna selection and designing for THz applications: Suitability and performance evaluation: A survey," IEEE Acc., Vol. 8, 113246-113261, Jun. 2020.

    3. Lee, S., M. Choo, S. Jung, and W. Hong, "Optically transparent nano-patterned antennas: A review and future directions," Appl. Sci., Vol. 8, No. 6, May 2018.

    4. Zhou, Y. and R. Azumi, "Carbon nanotube based transparent conductive films: Progress, challenges, and perspectives," Science and Technology of Advanced Materials, Vol. 17, No. 1, 493-516, Sep. 2016.

    5. Anand, S., M. S. Darak, and D. S. Kumar, "Investigation of fluorine-doped tin oxide based optically transparent E-shaped patch antenna for terahertz communications," Proc. AIP Conf., 430-436, Feb. 2014.

    6. Simons, R. N. and R. Q. Lee, "Feasibility study of optically transparent microstrip patch antenna," IEEE Antennas Propag. Soc. Int. Symp. 1997, Dig., 2100-2103, Jul. 1997.

    7. Mias, C., et al., "Optically transparent microstrip antennas," IEE Colloq. Antennas Automotives, 8, IEE, Feb. 2000.

    8. Guan, N., H. Furuya, K. Himeno, K. Goto, and K. Ito, "Basic study on an antenna made of a transparent conductive film," IEICE Trans. Commun., Art no. E90-B(9), Sep. 2007.

    9. Yasin, T., R. Baktur, and C. Furse, "A comparative study on two types of transparent patch antennas," 2011 XXXth URSI Gen. Assem. Sci. Symp., 1-4, IEEE, Aug. 2011.

    10. Song, H. J., T. Y. Hsu, D. F. Sievenpiper, H. P. Hsu, J. Schaffner, and E. Yasan, "A method for improving the efficiency of transparent film antennas," IEEE Antennas Wirel. Propag. Lett., Vol. 7, 753-756, Oct. 2008.

    11. Saberin, J. R. and C. Furse, "Challenges with optically transparent patch antennas," IEEE Antennas Propag. Mag., Vol. 54, 10-16, Jul. 2012.

    12. Thampy, A. S. and S. K. Dhamodharan, "Performance analysis and comparison of ITO-and FTO- based optically transparent terahertz U-shaped patch antennas," Phys. E Low-Dimensional Syst. Nanostructures, Vol. 66, 52-58, Feb. 2015.

    13. Anand, S., M. S. Darak, and D. Sriram Kumar, "Investigations on indium tin oxide based optically transparent terahertz E-shaped patch antenna," Adv. Intell. Syst. Comput., Vol. 264, 195-202, 2014.

    14. Thampy, A. S., M. S. Darak, and S. K. Dhamodharan, "Analysis of graphene based optically transparent patch antenna for terahertz communications," Phys. E Low-Dimensional Syst. Nanostructures, Vol. 66, 67-73, Feb. 2015.

    15. Desai, A., T. Upadhyaya, J. Patel, R. Patel, and M. Palandoken, "Flexible CPW fed transparent antenna for WLAN and sub-6 GHz 5G applications," Microw. Opt. Technol. Lett., Vol. 62, No. 5, 2090-2103, Feb. 2020.

    16. Desai, A., T. Upadhyaya, M. Palandoken, J. Patel, and R. Patel, "Transparent conductive oxide-based multiband CPW fed antenna," Wireless Personal Communications, Vol. 113, 961-975, Apr. 2020.

    17. Desai, A., T. Upadhyaya, and R. Patel, "Compact wideband transparent antenna for 5G communication systems," Microw. Opt. Technol. Lett., Vol. 61, No. 3, 781-786, Mar. 2019.

    18. Dao, Q. H., T. J. Cherogony, and B. Geck, "Optically transparent and circularly polarized patch antenna for K-band applications," 2016 IEEE Ger. Microw. Conf., 247-250, Mar. 2016.

    19. Wahid, W. I., M. R. Kamarudin, M. Khalily, and T. Peter, "Circular polarized transparent antenna for 5.8 GHz WLAN applicatons," Progress In Electromagnetics Research Letters, Vol. 57, 39-45, 2015.

    20. Rahman, M. A., E. Nishiyama, and I. Toyoda, "A wideband dual-circularly polarized 2 × 1 array antenna using multi-layer substrate for compact structure," Microw. Opt. Technol. Lett., Vol. 62, No. 1, 474-483, Sep. 2019.

    21. Khidre, A., K. F. Lee, F. Yang, and A. Elsherbeni, "Wideband circularly polarized E-shaped patch antenna for wireless applications," IEEE Antennas Propag. Mag., Vol. 52, No. 5, 219-229, Oct. 2010.

    22. Rahman, M. A., E. Nishiyama, and I. Toyoda, "A polarization reconfigurable microstrip antenna employing dual-perturbation technique," Progress In Electromagnetics Research M, Vol. 69, 197-206, 2018.

    23. Garbacz, R. and R. Turpin, "A generalized expansion for radiated and scattered fields," IEEE Trans. Antennas Propag., Vol. 19, No. 3, 348-358, May 1971.

    24. Harrington, R. F. and J. R. Mautz, "Theory of characteristic modes for conducting bodies," IEEE Trans. Antennas Propag., Vol. 19, No. 5, 622-628, Sep. 1971.

    25. Harrington, R., J. Mautz, and Y. Chang, "Characteristic modes for dielectric and magnetic bodies," IEEE Trans. Antennas Propag., Vol. 20, No. 2, 194-198, Mar. 1972.

    26. Tran, H. H., N. Nguyen-Trong, and A. M. Abbosh, "Simple design procedure of a broadband circularly polarized slot monopole antenna assisted by characteristic mode analysis," IEEE Acc., Vol. 6, 78386-78393, Dec. 2018.

    27. Zhang, Q., R. Ma, W. Su, and Y. Gao, "Design of a multimode UWB antenna using characteristic mode analysis," IEEE Trans. Antennas Propag., Vol. 66, No. 7, 3712-3717, Jul. 2018.

    28. Luo, Y., Z. N. Chen, and K. Ma, "Enhanced bandwidth and directivity of a dual-mode compressed high-order mode stub-loaded dipole using characteristic mode analysis," IEEE Trans. Antennas Propag., Vol. 67, No. 3, 1922-1925, Mar. 2019.

    29. Yan, Y., J. Ouyang, X. Ma, R. Wang, and A. Sharif, "Circularly polarized rfid tag antenna design for metallic poles using characteristic mode analysis," IEEE Antennas Wireless Propag. Lett., Vol. 18, No. 7, 1327-1331, Jul. 2019.

    30. Han, M., W. Dou, and , "Compact clock-shaped broadband circularly polarized antenna based on characteristic mode analysis," IEEE Acc., Vol. 7, 159952-159959, Nov. 2019.

    31. Chowdhury, M. S. U., M. A. Rahman, M. A. Hossain, and A. T. Mobashsher, "A transparent conductive material based circularly polarized nano-antenna for THz applications," Proc. 2020 IEEE Region 10 Symposium (TENSYMP), 754-757, Dhaka, Bangladesh, Jun. 2020 .

    32. Chen, Z., W. Li, R. Li, Y. Zhang, G. Xu, and H. Cheng, "Fabrication of highly transparent and conductive indium-tin oxidethin films with a high figure of merit via solution processing," Langmuir, Vol. 29, No. 45, 13836-13842, Oct. 2013.

    33. Chisca, S., I. Sava, V. Musteata, and M. Bruma, "Dielectric and conduction properties of polyimide films," CAS 2011 Proceedings (2011 International Semiconductor Conference), 253-256, Oct. 2011.

    34. Wu, X., C. Shu, X. He, S. Wang, X. Fan, Z. Yu, D. Yan, and W. Huan, "Optically transparent and thermal-stable polyimide filmsderived from a semi-aliphatic diamine: Synthesis andproperties," Macromol. Chem. Phys., Vol. 221, No. 5, 1-7, Mar. 2020.

    35. Zhang, W., H. Xiong, S. Wang, M. Li, and Y. Gu, "Electromagnetic characteristics of carbon nanotube film materials," Chinese Journal of Aeronautics, Vol. 28, No. 4, 1245-1254, May 2015.

    36. Kaskekla, A., et al., "Aerosol-synthesized SWCNT networks with tunable conductivity and transparency by a dry transfer technique," Nano Lett., Vol. 10, No. 11, 4349-4355, Sep. 2010.

    37. Dash, S. and A. Patnaik, "Material selection for THz antennas," Microw. Opt. Technol. Lett., Vol. 60, No. 5, 1183-1187, May 2018.

    38. Mansour, A. M., N. Shehata, B. M. Hamza, and M. R. M. Rizak, "Efficient design of flexible and low cost paper-basedinkjet-printed antenna," Int. J. Antennas Propag., Vol. 2015, 1-6, 2015.

    39. Paracha, K. N., S. K. A. Rahim, H. T. Chattha, S. S. Aljaafreh, S. U. Rehman, and Y. C. Lo, "Low-cost printed flexible antenna by using an office printer forconformal applications," Int. J. Antennas Propag., Vol. 2018, 1-7, 2018.

    40. Whittow, W. G., et al., "Inkjet-printed microstrip patch antennas realized on textile for wearable applications," IEEE Antennas Wirel. Propag. Lett., Vol. 13, 71-74, Jan. 2014.

    41. Labiano, I. I., A. Alomainy, and , "Flexible inkjet-printed graphene antenna on Kapton," Flex Print Electron., Vol. 6, 1-8, Jun. 2021.

    42. Kanso, A., et al., "Design and fabrication of EBG and CWP antennas using inkjet printing technology," Microw. Opt. Technol. Lett., Vol. 55, No. 7, 1520-1526, Jul. 2013.

    43. Kirsch, N. J., N. A. Vacirca, T. P. Kurzweg, A. K. Fontecchio, and K. R. Dandekar, "Performance of transparent conductive polymer antennas in a MIMO ad-hoc network," 2010 IEEE 6th Int. Conf. Wireless and Mobile Computing, Networking and Commun., 9-14, Oct. 2014.

    44. ITO ink for transparent conductive films, , https://product.statnano.com/product/9087/ito-ink-for-transparent-conductive-films, accessd on 30 Oct. 2021.

    45. Gilshtein, E., et al., "Inkjet-printed conductive ITO patterns for transparent security systems," Adv. Mater. Technol., Vol. 5, No. 9, 1-6, Sep. 2020.

    46. CNT conductive ink, , https://www.nanoshel.com/product/cnt-conductive-ink, accessd on 30 Oct. 2021.

    47. Elwi, T. A., H. M. Al-Rizzo, D. G. Rucker, E. Dervishi, Z. Li, and A. S. Biris, "Multi-walled carbon nanotube-based RF antennas," Nanotechnology, Vol. 21, No. 4, 1-10, Jan. 2010.

    48. Wakatsuki, A., Y. Muramoto, and T. Ishibashi, "Development of terahertz-wavephotomixer module using a uni-traveling-carrier photodiode," NTT Technical Review, Vol. 10, No. 2, 1-7, Feb. 2017.

    49. Cabedo-Fabres, M., E. Antonino-Daviu, A. Valero-Nogueira, and M. F. Bataller, "The theory of characteristic modes revisited: A contribution to the design of antennas for modern applications," IEEE Antennas Propag. Mag., Vol. 49, 52-68, Oct. 2007.

    50. Chen, Y. and C. F. Wang, Characteristic Modes, John Wiley & Sons, Inc., Hoboken, NJ, 2015.

    51. Yasin, T., R. Baktur, and C. Furse, "A study on the efficiency of transparent patch antennas designed from conductive oxide films," 2011 IEEE Int. Symp. Antennas Propag., 3085-3087, Jul. 2011.