Vol. 86

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues

Design of High Gain Lens Antenna by Using 100% Transmitting Metamaterials

By Qiu-Rong Zheng, Bi-Cheng Lin, and Bing-Han Zhou
Progress In Electromagnetics Research C, Vol. 86, 167-176, 2018


A transmitting lens antenna using Huygens matematerials is proposed. The type of metamaterial has a 100% transmission. For obtaining a high gain antenna, a patch antenna is placed at the focal point of the metasurface as a feed source, and then quasi-spherical wave can be transformed to plane wave. As demonstration of the concept, a lens antenna, working at frequency of 10 GHz is designed, fabricated and measured. Numerical and experimental results agree well with each other. The measured results show that the gain has been enhanced about 11.2 dB.


Qiu-Rong Zheng, Bi-Cheng Lin, and Bing-Han Zhou, "Design of High Gain Lens Antenna by Using 100% Transmitting Metamaterials," Progress In Electromagnetics Research C, Vol. 86, 167-176, 2018.


    1. Yu, N. F., P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, "Light propagation with phase discontinuities: Generalized laws of reflection and refraction," Science, Vol. 334, 333-338, 2011.

    2. Ni, X., N. K. Emani, A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, "Broadband light bending with plasmonic nanoantennas," Science, Vol. 335, 427, 2013.

    3. Pfeiffer, C. and A. Grbic, "Metamaterial Huygens’ surface: Tailoring wave fronts with reflectionless sheet ," Phys. Rev. Lett., Vol. 110, 197401, 2013.

    4. Xu, H. X., G. M. Wang, T. Cai, J. Xiao, and Y. Q. Zhuang, "Tunable Pancharatnam-Berry metasurface for dynamical and high-efficiency anomalous reflection," Opt. Express, Vol. 24, 27836-27848, 2016.

    5. Wong, J. P. S., M. Selvanayagam, and G. V. Eleftheriades, "Polarization considerations for scalar Huygens metasurfaces and characterization for 2-D refraction," IEEE Trans. Microw. Theory Techn., Vol. 63, 913-924, 2015.

    6. Pfeiffer, C., N. K. Emani, A. M. Shaltout, A. Boltasseva, V. M. Shalaev, and A. Grbic, "Efficient light bending with isotropic metamaterial Huygens’ surfaces," Nano Lett., Vol. 14, 2491-2497, 2014.

    7. Pors, A., O. Albrektsen, I. P. Radko, and S. I. Bozhevolnyi, "Gap plasmon-based metasurfaces for total control of reflected light," Sci. Rep., Vol. 3, 2155, 2013.

    8. Ma, H. F., G. Z. Wang, G. S. Kong, and T. J. Cui, "Independent controls of differently-polarized reflected waves by anisotropic metasurfaces," Sci. Rep., Vol. 5, 9605, 2015.

    9. Farahani, M. F. and H. Mosallaei, "Birefringent reflectarray metasurface for beam engineering in infrared," Opt. Lett., Vol. 38, 462-464, 2013.

    10. Sun, S. L., Q. He, S. Y. Xiao, Q. Xu, X. Li, and L. Zhou, "Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves," Nat. Mater., Vol. 11, 426-431, 2012.

    11. Sun, W., Q. He, S. Sun, and L. Zhou, "High-efficiency surface plasmon meta-couplers: Concept and microwave-regime realizations," Light Sci. Appl., Vol. 5, e16003, 2016.

    12. Yu, S., L. Li, G. Shi, C. Zhu, X. Zhou, and Y. Shi, "Design, fabrication, and measurement of reflective metasurface for orbital angular momentum vortex wave in radio frequency domain," Appl. Phys. Lett., Vol. 108, 121903, 2016.

    13. Yu, S., L. Li, G. Shi, C. Zhu, and Y. Shi, "Generating multiple orbital angular momentum vortex beams using a metasurface in radio frequency domain," Appl. Phys. Lett., Vol. 108, 241901, 2016.

    14. Huang, Y. W., W. T. Chen, W. Y. Tsai, P. C. Wu, C. M. Wang, G. Sun, and D. P. Tsai, "Aluminum plasmonic multicolor meta-hologram," Nano Lett., Vol. 15, 3122-3127, 2015.

    15. Huang, L., X. Chen, H. M. hlenbernd, H. Zhang, S. Chen, B. Bai, Q. Tan, G. Jin, K. W. Cheah, C. W. Qiu, J. Li, T. Zentgraf, and S. Zhang, "Three-dimensional optical holography using a plasmonic metasurface," Nat. Commun., Vol. 4, 2808, 2013.

    16. Chen, W. T., K. Y. Yang, C. M. Wang, Y. W. Huang, G. Sun, I. Chiang, C. Y. Liao, W. L. Hsu, H. T. Lin, S. Sun, L. Zhou, A. Q. Liu, and D. P. Tsai, "High-efficiency broadband meta-hologram with polarization-controlled dual images," Nano Lett., Vol. 14, 225-230, 2014.

    17. Wen, D., F. Yue, G. Li, G. Zheng, K. Chan, S. Chen, M. Chen, K. F. Li, P. W. H. Wong, K. W. Cheah, E. Y. B. Pun, S. Zhang, and X. Chen, "Helicity multiplexed broadband metasurface holograms," Nat. Commun., Vol. 6, 8241, 2015.

    18. Zheng, G., H. Mühlenbernd, M. Kenney, G. Li, T. Zentgraf, and S. Zhang, "Metasurface holograms reaching 80% efficiency," Nat. Nanothchnol., Vol. 10, 296-298, 2015.

    19. Pendry, J. B., "Negative refraction makes a perfect lens," Phys. Rev. Lett., Vol. 85, 3966, 2000.

    20. Li, X., S. Xiao, B. Cai, Q. He, T. J. Cui, and L. Zhou, "Flat metasurfaces to focus electromagnetic waves in reflection geometry," Opt. Lett., Vol. 37, 4940-4942, 2012.

    21. Wan, X., X. Shen, Y. Luo, and T. J. Cui, "Planar bifunctional Luneburg-fisheye lens made of an anisotropic metasurface," Laser Photonics Rev., Vol. 8, 757-765, 2014.

    22. Milligan, T. A., Modern Antenna Design, 2nd Ed., Willey, NJ, Hobeken, 2005.

    23. Cutler, C. C., "Parabolic-antenna design for microwaves," Proc. IRE, Vol. 35, 1284-1294, 1947.

    24. Vigueras, M. G., J. L. Gomez-Tornero, G. Goussetis, A. R. Weily, and Y. J. Guo, "Efficient synthesis of 1-D Fabry-Perot antennas with low side-lobe levels," IEEE Antennas Wireless Propag. Lett., Vol. 11, 869-872, 2012.

    25. Li, H. P., G. M. Wang, H. X. Xu, T. Cai, and J. G. Liang, "X-band phase-gradient metasurface for high-gain lens antenna application," IEEE Transactions on Antennas and Propagation, Vol. 63, 5144-5149, 2015.

    26. González-Ovejero, D., G. Minatti, G. Chattopadhyay, and S. Maci, "Multibeam by metasurface antennas," IEEE Transactions on Antennas and Propagation, Vol. 65, No. 6, 2923-2930, 2017.