Vol. 32

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2012-08-22

LTCC Differential-Fed Patch Antennas with Rat-Race Feeding Structures

By Kuo-Sheng Chin, Jia-An Liu, Chih Chun Chang, and Jui-Ching Cheng
Progress In Electromagnetics Research C, Vol. 32, 95-108, 2012
doi:10.2528/PIERC12071802

Abstract

This paper presents differential-fed patch antennas with excellent cross-polarization. This paper provides a detailed graphic illustration of factors that lead to deteriorated H-plane cross-polarization by the conventional single-ended feeding probes. A novel differential rat-race feeding structure was constructed to allow easy impedance matching. An experimental antenna was realized on low-temperature co-fired ceramic (LTCC) at 8 GHz. An excellent cross-polarization of less than -22.5 dB was achieved. When the operation frequency is high, the parasitic inductance caused by feeding probes may degrade the performance of antennas. This paper further proposes the use of differential aperture-coupled structures at high frequencies. An aperture-coupled antenna, realized at 40 GHz with low cross-polarization <-15 dB has been achieved.

Citation


Kuo-Sheng Chin, Jia-An Liu, Chih Chun Chang, and Jui-Ching Cheng, "LTCC Differential-Fed Patch Antennas with Rat-Race Feeding Structures," Progress In Electromagnetics Research C, Vol. 32, 95-108, 2012.
doi:10.2528/PIERC12071802
http://jpier.org/PIERC/pier.php?paper=12071802

References


    1. Petosa, A., A. Ittipiboon, and N. Gagnon, "Suppression of unwanted probe radiation in wideband probe-fed microstrip patches," Electron. Lett., Vol. 35, 355-357, Mar. 1999.
    doi:10.1049/el:19990269

    2. Zhang, Y.-P. and J.-J. Wang, "Theory and analysis of differentially-driven microstrip antennas," IEEE Trans. on Antennas and Propagat., Vol. 54, No. 4, 1092-1099, 2006.
    doi:10.1109/TAP.2006.872597

    3. Xue, Q., X.-Y. Zhang, and C.-H. K. Chin, "A novel differential-fed patch antenna," IEEE Antennas Wireless Propagat. Lett., Vol. 5, 471-474, 2006.
    doi:10.1109/LAWP.2006.885168

    4. Li, P., H. W. Lai, K. M. Luk, and K. L. Lau, "A wideband patch antenna with cross-polarization suppression," IEEE Antennas Wireless Propagat. Lett., Vol. 3, 211-214, 2004.
    doi:10.1109/LAWP.2004.834937

    5. Valavan, S. E., A. B. Yang, A. Yarovoy, and L. P. Ligthart, "An M-band differentially fed, aperture coupled stacked patch antenna in LTCC," Proceedings of the 5th European Radar Conference, 200-203, 2008.

    6. Wu, T., Y. Li, S.-X. Gong, and Y. Liu, "A novel low RCS microstrip antenna using aperture coupled microstrip dipoles," Journal of Electromagnetic Waves and Applications, Vol. 22, No. 7, 953-963, 2008.
    doi:10.1163/156939308784150128

    7. Lee, E., K. M. Chan, P. Gardner, and T. E. Dodgson, "Active integrated antenna design using a contact-less, proximity coupled, differentially fed technique," IEEE Trans. on Antennas and Propagat., Vol. 55, No. 2, 267-276, 2007.
    doi:10.1109/TAP.2006.889828

    8. Akkermans, J. A. G., M. H. A. J. Herben, and M. C. van Beurden, "Balanced-fed planar antenna for millimeter-wave transceivers," IEEE Trans. on Antennas and Propagat., Vol. 57, No. 10, 2871-2881, Oct. 2009.
    doi:10.1109/TAP.2009.2029278

    9. Ma, Q., B.-H. Sun, J.-F. Li, and Q.-Z, Liu, "A differential rectangular patch antenna with Marchand balun for UWB applications," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 1, 49-55, 2009.
    doi:10.1163/156939309787604698

    10. Chen, Z. N. and M. Y. W. Chia, "A novel center-slot-fed suspended plate antenna," IEEE Trans. on Antennas and Propagat., Vol. 51, 1407-1410, Jun. 2003.
    doi:10.1109/TAP.2003.814001

    11. Brauner, T., R. Vogt, and W. Bächtold, "A differential active patch antenna element for array applications," IEEE Microw. Wireless Compon. Lett., Vol. 13, 161-163, Apr. 2003.
    doi:10.1109/LMWC.2003.811045

    12. Chan, K. M., E. Leef, P. Gardner, and P. S. Hall, "Non-contact coupling between antenna and circuit front-ends," The 2nd European Conference on Antennas and Propagation, EuCAP, 2007.

    13. Chin, K.-S., H.-T. Chang, and J.-A. Liu, "Design of LTCC wideband patch antenna for LMDS band applications," IEEE Antennas Wireless Propagat. Lett., Vol. 9, 1111-1114, 2010.

    14. Xia, L., R.-M. Xu, and B. Yan, "LTCC interconnect modeling by support vector regression," Progress In Electromagnetics Research, Vol. 69, 67-75, 2007.
    doi:10.2528/PIER06120503

    15. Chin, K.-S., H.-T. Chang, J.-A. Liu, B.-G. Chen, J.-C. Cheng, and J. S. Fu, "Stacked patch antenna array on LTCC substrate operated at 28 GHz," Journal of Electromagnetic Waves and Applications, Vol. 25, No. 4, 527-538, 2011.
    doi:10.1163/156939311794500223

    16. Wang, Z., P. Li, R.-M. Xu, and W. Lin, "A compact X-band receiver front-end module based on low temperature co-fired ceramic technology," Progress In Electromagnetics Research, Vol. 92, 167-180, 2009.
    doi:10.2528/PIER09040701

    17. Lee, Y. C., "CPW-to-stripline vertical via transitions for 60 GHz LTCC SoP applications," Progress In Electromagnetics Research Letters, Vol. 2, 37-44, 2008.
    doi:10.2528/PIERL07122805

    18. Cao, W.-Q., B.-N. Zhang, A. J. Liu, D.-S. Guo, T.-B. Yu, and Y. Wei, "A dual-band microstrip antenna with omnidirectional circularly polarized and unidirectional linearly polarized characteristics based on metamaterial structure," Journal of Electromagnetic Waves and Applications, Vol. 26, No. 2-3, 274-283, 2012.