Vol. 4

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2008-07-21

Compact UWB Bandpass Filter with Notched Band

By Feng Wei, Lei Chen, Xiao-Wei Shi, Xin Huai Wang, and Qiulin Huang
Progress In Electromagnetics Research C, Vol. 4, 121-128, 2008

Abstract

A compact ultra-wideband (UWB) band-pass filter (BPF) with highly rejected notched band is proposed in this paper. The proposed UWB BPF is composed of two cascaded interdigital hairpin resonator units. Interdigital hairpin resonator unit with different coupling is theoretically analyzed. The working frequency of the proposed UWB BPF is 3.1-10.6 GHz and notched band is 5.7-5.8 GHz. Finally, measured results are presented, which are in good agreement with the simulation results.

Citation


Feng Wei, Lei Chen, Xiao-Wei Shi, Xin Huai Wang, and Qiulin Huang, "Compact UWB Bandpass Filter with Notched Band," Progress In Electromagnetics Research C, Vol. 4, 121-128, 2008.
http://jpier.org/PIERC/pier.php?paper=08060104

References


    1. FCC, "Revision of part 15 of the commission's rules regarding ultra-wideband transmission systems," Tech. Rep. ET-Docket 98–153, FCC02–48, Federal Communications Commission, Apr. 2002.

    2. Chen, F. C. and W. C. Chew, "Time-domain ultra-wideband microwave imaging radar system," Journal of Electromagnetic Waves and Applications, Vol. 17, 313-331, 2003.
    doi:10.1163/156939303322235842

    3. Hong, J.-S. and H. Shaman, "An optimum ultra-wideband microstrip filter," Microw. Opt. Technol. Lett., Vol. 47, No. 3, 230-233, 2005.
    doi:10.1002/mop.21133

    4. Prabhu, S., J. Mandeep, and S. Jovanovic, "Microstrip bandpass filter at S band using capacitive coupled resonator," Progress In Electromagnetics Research, Vol. 76, 223-228, 2007.
    doi:10.2528/PIER07071205

    5. Menzel, W., M. S. R. Tito, and L. Zhu, "Low-loss ultra-wideband (UWB) filters using suspended stripline," Proc. 2005 Asia-Pacific Microw. Conf., Vol. 4, 2148-2151, 2005.

    6. Li, K., D. Kurita, and T. Matsui, "An ultra-wideband bandpass filter using broadside-coupled microstrip-coplanar waveguide structure," IEEE MTT-S Int. Dig., 675-678, 2005.
    doi:10.1109/MWSYM.2005.1516697

    7. Wang, B.-Z., X.-H. Wang, and J.-S. Hong, "On the generalized transmission-line theory," Journal of Electromagnetic Waves and Applications, Vol. 19, No. 3, 413-425, 2005.
    doi:10.1163/1569393054139697

    8. Matsunaga, M., M. Katayama, and K. Yasumoto, "Coupled-mode analysis of line parameters of coupled microstrip lines," Progress In Electromagnetics Research, Vol. 24, 1-17, 1999.
    doi:10.2528/PIER99032902

    9. Zhu, Y.-Z. and Y.-J. Xie, "Novel microstrip bandpass filters with transmission zeros," Progress In Electromagnetics Research, Vol. 77, 29-41, 2007.
    doi:10.2528/PIER07072301

    10. Chen, H. and Y. Zhang, "A novel and compact UWB bandpass filter using microstrip fork-form resonators," Progress In Electromagnetics Research, Vol. 77, 273-280, 2007.
    doi:10.2528/PIER07082302

    11. Kazerooni, M. and A. Cheldavi, "Simulation, analysis, design and applications of array defected microstrip structure (ADMS) filters using rigorously coupled multi-strip (RCMS) method," Progress In Electromagnetics Research, Vol. 63, 193-207, 2006.
    doi:10.2528/PIER06052803

    12. Xiao, J.-K. and Y. Li, "Novel compact microstrip square ring bandpass filters," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 13, 1817-1826, 2006.
    doi:10.1163/156939306779292156

    13. Fan, J.-W., C.-H. Liang, and X.-W. Dai, "Design of cross-coupled dual-band filter with equal-length split-ring resonators," Progress In Electromagnetics Research, Vol. 75, 285-293, 2007.
    doi:10.2528/PIER07060904

    14. Zhao, L.-P., X.-W. Dai, Z.-X. Chen, and C.-H. Liang, "Novel design of dual-mode dual-band bandpass filter with triangular resonators," Progress In Electromagnetics Research, Vol. 77, 417-424, 2007.
    doi:10.2528/PIER07090501

    15. Niu, J.-X., X.-L. Zhou, and L.-S. Wu, "Analysis and application of novel structures based on split ring resonators and coupled lines," Progress In Electromagnetics Research, Vol. 75, 153-162, 2007.
    doi:10.2528/PIER07060101

    16. Zhao, L.-P., X. Zhai, B. Wu, T. Su, W. Xue, and C.-H. Liang, "Novel design of dual-mode bandpass filter using rectangle structure," Progress In Electromagnetics Research B, Vol. 3, 131-141, 2008.
    doi:10.2528/PIERB07121003

    17. Xiao, J.-K., Q.-X. Chu, and S. Zhang, "Novel microstrip triangular resonator bandpass filter with transmission zeros and wide bands using fractal-shaped defection," Progress In Electromagnetics Research, Vol. 77, 343-356, 2007.
    doi:10.2528/PIER07081901

    18. Xue, W., C.-H. Liang, X.-W. Dai, and J.-W. Fan, "Design of miniature planar dual-band filter with 0feed structures," Progress In Electromagnetics Research, Vol. 77, 493-499, 2007.
    doi:10.2528/PIER07090502

    19. Naghshvarian-Jahromi, M. and M. Tayarani, "Miniature planar UWB bandpass filters with circular slots in ground," Progress In Electromagnetics Research Letters, Vol. 3, 87-93, 2008.
    doi:10.2528/PIERL08020902

    20. Zhu, L., W. Menzel, K. Wu, and F. Boegelsack, "Theoretical characterization and experimental verification of a novel compact broadband microstrip bandpass filter," Proc. Asia-Pacific Microwave Conf., 625-628, 2001.

    21. Zhu, L., S. Sun, and W. Menzel, "Ultra-wideband (UWB) bandpass filters using multiple-mode resonator," IEEE Microw. Wireless Compon. Lett., Vol. 15, No. 11, 796-798, 2005.
    doi:10.1109/LMWC.2005.859011

    22. Zhu, L. and H. Wang, "Ultra-wideband bandpass filter on aperturebacked microstrip line," Electron. Lett., Vol. 41, No. 18, 1015-1016, 2005.
    doi:10.1049/el:20052317

    23. Wang, H., L. Zhu, and W. Menzel, "Ultra-wideband (UWB) bandpass filters with hybrid microstrip/CPW structure," IEEE Microw. Wireless Compon. Lett., Vol. 15, No. 12, 844-846, 2005.
    doi:10.1109/LMWC.2005.860016

    24. Shaman, H. and J. S. Hong, "Ultra-wideband (UWB) bandpass filter with embedded band notch structures," IEEE Microw. Wireless Compon. Lett., Vol. 17, No. 3, 193-195, 2007.
    doi:10.1109/LMWC.2006.890467