Vol. 85
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2019-10-07
Two-Line Technique for Dielectric Material Characterization with Application in 3D-Printing Filament Electrical Parameters Extraction
By
Progress In Electromagnetics Research M, Vol. 85, 195-207, 2019
Abstract
The literature lacks detailed information about the electrical properties of the plastic filaments used in 3D printing. This opens the way for research on characterizing the types of materials used in these filaments. In this work, a method for the extraction of the dielectric constant and loss tangent of materials is described. This method, which is suitable for characterizing any dielectric material, is then used to characterize 3D-printed samples based on different filament materials and infill densities over a very wide frequency range [0.02-10 GHz]. The selected materials are Polylactic Acid (PLA), Acrylonitrile Butadiene Styrene (ABS) and a semi-flex filament that combines the two important features of flexibility and endurance. These three types are the most commonly used in 3D printing. The two$-$line technique is applied to extract the complex permittivity of the material under test (MUT) from the propagation constant. This method employs the uncalibrated scattering parameters with different types of transmission line for any characteristic impedance. A rectangular coaxial transmission-line fixture has been used to validate the theoretical work through simulations and measurements involving the 3D filament samples.
Citation
Ali Al Takach, Franck Moukanda Mbango, Fabien Ndagijimana, Mohammed Al-Husseini, and Jalal Jomaah, "Two-Line Technique for Dielectric Material Characterization with Application in 3D-Printing Filament Electrical Parameters Extraction," Progress In Electromagnetics Research M, Vol. 85, 195-207, 2019.
doi:10.2528/PIERM19071702
References

1. Al Takach, A., F. Ndagijimana, J. Jomaah, and M. Al-Husseini, "3D-printed low-cost and lightweight TEM cell," IEEE International Conference on High Performance Computing & Simulation (HPCS), 47-50, 2018.

2. Al Takach, A., F. Ndagijimana, J. Jomaah, and M. Al-Husseini, "Position optimization for probe calibration enhancement inside the TEM cell," IEEE International Multidisciplinary Conference on Engineering Technology (IMCET), 1-5, 2018.

3. Bongard, F., et al. "3D-printed Ka-band waveguide array antenna for mobile SATCOM applications," IEEE 11th European Conference on Antennas and Propagation (EUCAP), 579-583, 2017.

4. Farooqui, M. F. and A. Shamim, "3D inkjet printed disposable environmental monitoring wireless sensor node," IEEE MTT-S International Microwave Symposium (IMS), 1379-1382, 2017.
doi:10.1109/MWSYM.2017.8058872

5. Kronberger, R. and P. Soboll, "New 3D printed microwave metamaterial absorbers with conductive printing materials," IEEE 46th European Microwave Conference (EuMC), 596-599, 2016.

6. Chen, L. F., C. K. Ong, C. P. Neo, V. V. Varadan, and V. K. Varadan, Microwave Electronics: Measurement and Materials Characterization, John Wiley & Sons, 2004.
doi:10.1002/0470020466

7. Shwaykani, H., A. El-Hajj, J. Costantine, F. A. Asadallah, and M. Al-Husseini, "Dielectric spectroscopy for planar materials using guided and unguided electromagnetic waves," IEEE Middle East and North Africa Communications Conference (MENACOMM), 1-5, 2018.

8. Padmanabhan, S., P. Kirby, J. Daniel, and L. Dunleavy, "Accurate broadband on-wafer SOLT calibrations with complex load and thru models," IEEE 61st ARFTG Conference Digest, 5-10, 2003.

9. Vicente, A. N., G. M. Dip, and C. Junqueira, "The step by step development of NRW method," SBMO/IEEE MTT-S International Microwave and Optoelectronics Conference (IMOC), 738-742, 2011.
doi:10.1109/IMOC.2011.6169318

10. Rothwell, E. J., J. L. Frasch, S. M. Ellison, P. Chahal, and R. O. Ouedraogo, "Analysis of the Nicolson-Ross-Weir method for characterizing the electromagnetic properties of engineered materials," Progress In Electromagnetics Research, Vol. 157, 31-47, 2016.
doi:10.2528/PIER16071706

11. Kuek, C. Y., Measurement of Dielectric Material Properties, Rohde & Schwarz, 2012.

12. Chen, X., T. M. Grzegorczyk, B. I. Wu, J. Pacheco, Jr., and J. A. Kong, "Robust method to retrieve the constitutive effective parameters of metamaterials," Physical Review E, Vol. 70, No. 1, 016608, 2004.
doi:10.1103/PhysRevE.70.016608

13. Arslanagić, S., T. V. Hansen, N. A. Mortensen, A. H. Gregersen, O. Sigmund, R. W. Ziolkowski, and O. Breinbjerg, "A review of the scattering-parameter extraction method with clarification of ambiguity issues in relation to metamaterial homogenization," IEEE Antennas and Propagation Magazine, Vol. 55, No. 2, 91-106, 2013.
doi:10.1109/MAP.2013.6529320

14. Eul, H. J. and B. Schiek, "A generalized theory and new calibration procedures for network analyzer self-calibration," IEEE Transactions on Microwave Theory and Techniques, Vol. 39, 724-731, 1991.
doi:10.1109/22.76439

15. Marks, R. B., "A multiline method of network analyzer calibration," IEEE Transactions on Microwave Theory and Techniques, Vol. 39, No. 7, 1205-1215, 1991.
doi:10.1109/22.85388

16. Hasar, U. C., G. Buldu, M. Bute, J. J. Barroso, T. Karacali, and M. Ertugrul, "Determination of constitutive parameters of homogeneous metamaterial slabs by a novel calibration-independent method," AIP Advances, Vol. 4, No. 10, 107116, 2014.
doi:10.1063/1.4898148

17. Frickey, D. A., "Conversions between S, Z, Y , H, ABCD, and T parameters which are valid for complex source and load impedances," IEEE Transactions on Microwave Theory and Techniques, Vol. 42, 205-211, 1994.
doi:10.1109/22.275248

18. Huynen, I., C. Steukers, and F. Duhamel, "A wideband line-line dielectrometric method for liquids, soils, and planar substrates," IEEE Transactions on Instrumentation and Measurement, Vol. 50, No. 5, 1343-1348, 2001.
doi:10.1109/19.963208

19. Pozar, D. M., Microwave Engineering, Wiley, 2005.

20. Liu, Z., L. Zhu, G. Xiao, and Q. S. Wu, "An effective approach to deembed the complex propagation constant of half-mode SIW and its application," IEEE Transactions on Components, Packaging and Manufacturing Technology, Vol. 6, No. 1, 109-116, 2016.
doi:10.1109/TCPMT.2015.2496629

21. Zhou, L., S. Sun, H. Jiang, and J. Hu, "Electrical-thermal characterizations of SIW with numerical SOC technique," IEEE International Conference on Computational Electromagnetics (ICCEM), 1-2, 2018.

22. Le, T., B. Song, Q. Liu, R. A. Bahr, S. Moscato, C. P. Wong, and M. M. Tentzeris, "A novel strain sensor based on 3D printing technology and 3D antenna design," IEEE 65th Electronic Components and Technology Conference (ECTC), 981-986, 2015.
doi:10.1109/ECTC.2015.7159714

23. Mirzaee, M. and S. Noghanian, "High frequency characterisation of wood-fill PLA for antenna additive manufacturing application," Electronics Letters, Vol. 52, No. 20, 1656-1658, 2016.
doi:10.1049/el.2016.2505

24. Krupka, J., "Frequency domain complex permittivity measurements at microwave frequencies," Measurement Science and Technology, Vol. 17, No. 6, R55, 2006.
doi:10.1088/0957-0233/17/6/R01