Vol. 25
Latest Volume
All Volumes
PIERB 110 [2025] PIERB 109 [2024] PIERB 108 [2024] PIERB 107 [2024] PIERB 106 [2024] PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2010-08-20
Calculation of the Nonlinear Absorption Coefficient of a Strong Electromagnetic Wave by Confined Electrons in Doping Superlatices
By
Progress In Electromagnetics Research B, Vol. 25, 39-52, 2010
Abstract
Analytic expressions for the nonlinear absorption coefficient (nonlinear absorption coefficient=NAC) of a strong electromagnetic wave (laser radiation) caused by confined electrons for the case of electron-optical phonon scattering in doping superlattices (doping superlattices=DSLs) are calculated by using the quantum kinetic equation for electrons. The problem is also considered for both the absence and the presence of an external magnetic field. The dependence of the NAC on the intensity E0 and the energy hΩ of the external strong electromagnetic wave (electromagnetic wave=EMW), the temperature T of the system, the doping concentration nD and the cyclotron frequency ΩB for case of an external magnetic field is obtained. Two cases for the absorption: Close to the absorption threshold ∣khΩ-0∣≤ε and far away from the absorption threshold ∣khΩ-0∣≥ε (k=0, ±1, ±2..., 0 and ε are the frequency of optical phonon and the average energy of electrons, respectively) are considered. The analytic expressions are numerically evaluated, plotted, and discussed for a specific DSLs n-GaAs/p-GaAs. The computations show that the NAC in DSLs in case presence of an external magnetic field is much more greater than to it is absence of an external magnetic field. The appearance of an external magnetic field causes surprising changes in the nonlinear absorption. All the results for the presence of an external magnetic field are compared with those for the absence of an external magnetic field to show the difference.
Citation
Nguyen Quang Bau, and Do Manh Hung, "Calculation of the Nonlinear Absorption Coefficient of a Strong Electromagnetic Wave by Confined Electrons in Doping Superlatices," Progress In Electromagnetics Research B, Vol. 25, 39-52, 2010.
doi:10.2528/PIERB10062902
References

1. Matsumoto, Y., S. Ozaki, and S. Adachi, "Optical properties of the bulk amorphous semiconductor ZnIn2Te4," J. Appl. Phys., Vol. 86, 3705, 1999.
doi:10.1063/1.371282

2. Jellison, Jr. and G. E. F. A. Modine, "Erratum: Parameterization of the optical functions of amorphous materials in the interband region," Appl. Phys. Lett., Vol. 69, 371, 1996.
doi:10.1063/1.118064

3. Khokhlov, A. F., I. A. Chuchmaǐ, and A. V. Ershov, "Absorption features in a-Si/ZrOx Nanostructures," Semiconductors, Vol. 34, No. 3, 344, 2000.
doi:10.1134/1.1187983

4. Keimann, F., R. Brazis, H. Barkley, W. Kasparek, M. Thumm, and V. Erckmann, "Millimeter-wave frequency tripling in bulk semiconductors," Europhys. Lett., Vol. 11, 337, 1990.
doi:10.1209/0295-5075/11/4/008

5. Lyubin, V. M. and M. L. Klebanov, "Laser-induced anisotropic absorbtion, reflection, and scattering of light in chalcogenide glassy semiconductors," Semiconductors, Vol. 32, No. 8, 817, 1998.
doi:10.1134/1.1187513

6. Malevich, V. L. and I. A. Utkin, "Nonlinear optical absorption in a heavily doped degenerate n-GaAs," Semiconductors, Vol. 34, No. 8, 924, 2000.
doi:10.1134/1.1188101

7. Malevich, V. L. and E. M. Epstein, "Nonlinear optical properties of conduction electrons in semiconductors," Sov. Quantum Electronic, Vol. 1, 1468, 1974.

8. Pavlovich, V. V. and E. M. Epshtein, "Quantum theory of absorption of electronmagnetic wave by free carries in simiconductors," Sov. Phys. Stat., Vol. 19, 1760, 1977.

9. Schmittrink, S., D. S. Chemla, and D. A. B. Miller, "Linear and nonlinear optical properties of semiconductor quantum wells," Adv. Phys., Vol. 38, 89, 1989.
doi:10.1080/00018738900101102

10. Zegrya, G. G. and V. E. Perlin, "Intraband absorption of light in quantum wells induced by electron-electron collisions," Semiconductors, Vol. 32, No. 4, 417, 1998.
doi:10.1134/1.1187408

11. Shmelev, G. M., I. A. Chaikovskii, and N. Q. Bau, "HF conduction in semiconductors superlattices," Sov. Phys. Tech. Semicond., Vol. 12, 1932, 1978.

12. Schmit-Rink, S., D. S. Chemla, and D. A. B. Miler, "Linear and nonlinear optical properties in semiconductor quantum wells," Adv. Phys., Vol. 38, 89, 1989.
doi:10.1080/00018738900101102

13. Bau, Q. N., D. M. Hung, and B. N. Ngoc, "The nonlinear absorption coeffcient of a strong electromagnetic wave caused by confined electrons in quantum wells," J. Korean Phys. Soc., Vol. 54, No. 2, 765, 2009.
doi:10.3938/jkps.54.765

14. Vasilopoulos, P., M. Charbonneau, and C. M. Van Vliet, "Linear and nonlinear electrical conduction in quasi-two-dimensional quantum wells," Phys. Rev. B, Vol. 35, 1334, 1987.
doi:10.1103/PhysRevB.35.1334

15. Abouelaoualim, D., "Electron-confined LO-phonon scattering in GaAs-Al0.45Ga0.55 As superlattice ," Pramana Journal of Physics, Vol. 66, 455-465, 2006.
doi:10.1007/BF02704398

16. Gaggero-Sager, M. L., N. Moreno-Martinez, I. Rodriguez-Vargas, R. Perez-Alvarez, V. V. Grimalsky, and M. E. Mora-Ramos, "Electronic structure as a function of temperature for Si doped quantum wells in GaAs," PIERS Online, Vol. 3, No. 6, 851-854, 2007.
doi:10.2529/PIERS061006210621

17. Butscher, S. and A. Knorr, "Occurrence of intersubband polaronic repellons in a two-dimesional electron gas," Phys. Rev. L, Vol. 97, 197401, 2006.
doi:10.1103/PhysRevLett.97.197401

18. Bau, N. Q. and T. C. Phong, "Calculations of the absorption coefficient of a weak EMW by free carriers in quantum wells by the Kubo-Mori method," J. Phys. Soc. Jpn., Vol. 67, 3875, 1998.
doi:10.1143/JPSJ.67.3875

19. Bau, N. Q., N. V. Nhan, and T. C. Phong, "Calculations of the absorption coefficient of a weak electromagnetic wave by free carriers in doped superlattices by using the Kubo-Mori method," J. Korean. Phys. Soc., Vol. 41, 149, 2002.

20. Samuel, E. P. and D. S. Patil, "Analysis of wavefunction distribution in quantum well biased laser diode using transfer matrix method," Progress In Electromagnetics Research Letters, Vol. 1, 119, 2008.
doi:10.2528/PIERL07111902

21. Bau, N. Q., L. Dinh, and T. C. Phong, "Absorption coefficient of weak electromagnetic wave caused by confined electrons in quantum wires," J. Korean. Phys. Soc., Vol. 51, 1325-1330, 2007.
doi:10.3938/jkps.51.1325

22. Karabulut, I. and S. Baskoutas, "Linear and nonlinear optical absorption coefficients and refractive index changes in spherical quantum dots: Effects of impurities, electric field, size, and optical intensity," J. Appl. Phys., Vol. 103, 073512, 2008.
doi:10.1063/1.2904860