login
Vol. 158
Latest Volume
All Volumes
PIER 182 [2025] PIER 181 [2024] PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2017-02-24
Shape Reconstruction via Equivalence Principles,Constrained Inverse Source Problems and Sparsity Promotion
By
Progress In Electromagnetics Research, Vol. 158, 37-48, 2017
Abstract
A new approach for position and shape reconstruction of both penetrable and impenetrable objects from the measurements of the scattered fields is introduced and described. The approach takes advantage of the fact that for perfect electric conductors the induced currents are localized on the boundary, and equivalent sources also placed on the surface of the scatterers can be considered in the case of dielectric targets by virtue of the equivalence theorem. Starting from these considerations, a new inversion approach is formulated in order to retrieve the location and the boundary of unknown objects. Examples with both numerical and experimental data are given to demonstrate and assess the effectiveness of the method.
Citation
Martina Bevacqua, and Tommaso Isernia, "Shape Reconstruction via Equivalence Principles,Constrained Inverse Source Problems and Sparsity Promotion," Progress In Electromagnetics Research, Vol. 158, 37-48, 2017.
doi:10.2528/PIER16111404
References

1. Scapaticci, R., L. Di Donato, I. Catapano, and L. Crocco, "A feasibility study on microwave imaging for brain stroke monitoring," Progress In Electromagnetics Research B, Vol. 40, 305-324, 2012.
doi:10.2528/PIERB12022006

2. Bozza, G., M. Brignone, and M. Pastorino, "Application of the no-sampling linear sampling method to breast cancer detection," IEEE Trans. Biomed. Eng., Vol. 57, No. 10, 2525-2534, 2010.
doi:10.1109/TBME.2010.2055059

3. Bozza, G., M. Brignone, M. Pastorino, M. Piana, and A. Randazzo, "A linear sampling approach to crack detection in microwave imaging," 2008 IEEE International Workshop on Imaging Systems and Techniques, 222-226, Crete, 2008.
doi:10.1109/IST.2008.4659973

4. Cakoni, F. and D. Colton, Qualitative Methods in Inverse Scattering Theory, Springer-Verlag, 2006.

5. Agarwal, K. and X. Chen, "Applicability of MUSIC-type imaging in two-dimensional electromagnetic inverse problems," IEEE Trans. Antennas Propag., Vol. 56, No. 10, 3217-3223, 2008.
doi:10.1109/TAP.2008.929434

6. Zhong, Y. and X. Chen, "MUSIC imaging and electromagnetic inverse scattering of multiplescattering small anisotropic spheres," IEEE Trans. Antennas Propag., Vol. 55, No. 12, 3542-3549, 2007.
doi:10.1109/TAP.2007.910488

7. Iakovleva, E., S. Gdoura, D. Lesselier, and G. Perrusson, "Multistatic response matrix of a 3D inclusion in half space and MUSIC imaging," IEEE Trans. Antennas Propag., Vol. 55, No. 9, 2598-2609, 2007.
doi:10.1109/TAP.2007.904103

8. Tortel, H., G. Micolau, and M. Saillard, "Decomposition of the time reversal operator for electromagnetic scattering," Journal of Electromagnetic Waves and Applications, Vol. 13, No. 5, 687-719, 1999.
doi:10.1163/156939399X01113

9. Devaney, A. J., E. A. Marengo, and F. K. Gruber, "Time-reversal-based imaging and inverse scattering of multiply scattering point targets," J. Acoust. Soc. Am., Vol. 118, No. 5, 3129-3138, 2005.
doi:10.1121/1.2042987

10. Colton, D. and A. Kirsch, "A simple method for solving inverse scattering problems in the resonant region," Inverse Probl., Vol. 12, 383-393, 1996.
doi:10.1088/0266-5611/12/4/003

11. Colton, D., M. Piana, and R. Potthast, "A simple method using morozov’s discrepancy principle for solving inverse scattering problems," Inverse Probl., Vol. 13, 1477-1493, 1997.
doi:10.1088/0266-5611/13/6/005

12. Catapano, I., L. Crocco, and T. Isernia, "On simple methods for shape reconstruction of unknown scatterers," IEEE Trans. Antennas Propag., Vol. 55, No. 5, 1431-1436, 2007.
doi:10.1109/TAP.2007.895563

13. Kirsch, A., "Characterization of the shape of a scattering obstacle using the spectral data of the far-field operator," Inverse Probl., Vol. 14, 1489-1512, 1998.
doi:10.1088/0266-5611/14/6/009

14. Kirsch, A., "Factorization of the far-field operator for the inhomogeneous medium case and an application in inverse scattering theory," Inverse Probl., Vol. 15, 413-429, 1999.
doi:10.1088/0266-5611/15/2/005

15. Potthast, R., "A point source method for inverse acoustic and electromagnetic obstacle scattering problems," IMA J. Appl. Math., Vol. 61, No. 2, 119-140, 1998.
doi:10.1093/imamat/61.2.119

16. Litman, A., D. Lesselier, and F. Santosa, "Reconstruction of a two-dimensional binary obstacle by controlled evolution of a level-set," Inverse Probl., Vol. 14, No. 3, 685-706, 1998.
doi:10.1088/0266-5611/14/3/018

17. Dorn, O. and D. Lesselier, "Level set methods for inverse scattering," Inverse Probl., Vol. 22, No. 4, R67-R131, 2006.
doi:10.1088/0266-5611/22/4/R01

18. Kleinman, R. E. and P. M. den Berg, "Two-dimensional location and shape reconstruction," Radio Science, Vol. 29, No. 4, 1157-1169, 1994.
doi:10.1029/93RS03445

19. Liseno, A. and R. Pierri, "Imaging perfectly conducting objects as support of induced currents: Kirchhoff approximation and frequency diversity," J. Opt. Soc. Am. A, Vol. 19, 1308-1318, 2002.
doi:10.1364/JOSAA.19.001308

20. Shen, J., Y. Zhong, X. Chen, and L. Ran, "Inverse scattering problems of reconstructing perfectly electric conductors with TE illumination," IEEE Trans. Antennas Propag., Vol. 61, No. 9, 4713-4721, Sept. 2013.
doi:10.1109/TAP.2013.2271891

21. Poli, L., G. Oliveri, and A. Massa, "Imaging sparse metallic cylinders through a local shape function Bayesian compressive sensing approach," J. Opt. Soc. Am. A, Vol. 30, No. 6, 1261-1272, 2013.
doi:10.1364/JOSAA.30.001261

22. Stevanovic, M. N., L. Crocco, A. R. Djordjevic, and A. Nehorai, "Higher order sparse microwave imaging of PEC scatterers," IEEE Trans. Antennas Propag., Vol. 64, No. 3, 988-997, Mar. 2016.
doi:10.1109/TAP.2016.2521879

23. Franceschetti, G., Electromagnetics: Theory, Techniques, and Engineering Paradigms, Springer Science & Business Media, 2013.

24. Donoho, D., "Compressed sensing," IEEE Trans. Inf. Theory, Vol. 52, No. 4, 1289-1306, 2006.
doi:10.1109/TIT.2006.871582

25. Massa, A., P. Rocca, and G. Oliveri, "Compressive sensing in electromagnetics — A review," IEEE Antennas and Propagation Magazine, Vol. 57, No. 1, 224-238, Feb. 2015.
doi:10.1109/MAP.2015.2397092

26. Bevacqua, M., L. Crocco, L. Di Donato, T. Isernia, and R. Palmeri, "Exploiting field conditioning and sparsity for microwave imaging of non-weak buried targets," Radio Sci., 2016.

27. Shah, P., U. K. Khankhoje, and M. Moghaddam, "Inverse scattering using a joint L1L2 normbased regularization," IEEE Trans. Antennas Propag., Vol. 64, No. 4, 1373-1384, Apr. 2016.
doi:10.1109/TAP.2016.2529641

28. Azghani, M., P. Kosmas, and F. Marvasti, "Microwave medical imaging based on sparsity and an iterative method with adaptive thresholding," IEEE Trans. Medical Imaging, Vol. 34, No. 2, 357-365, 2015.
doi:10.1109/TMI.2014.2352113

29. Morabito, A. F., R. Palmeri, and T. Isernia, "A compressive-sensing-inspired procedure for array antenna diagnostics by a small number of phaseless measurements," IEEE Trans. Antennas Propag., Vol. 64, No. 7, 3260-3265, Jul. 2016.
doi:10.1109/TAP.2016.2562669

30. Bevacqua, M., T. Isernia, L. Crocco, and L. Di Donato, "A (CS)2 approach to inverse scattering," 2014 IEEE Conference on Antenna Measurements & Applications (CAMA), 1-3, Nov. 16–19, 2014.

31. Hawes, M. B. and W. Liu, "Compressive sensing-based approach to the design of linear robust sparse antenna arrays with physical size constraint," IET Microwaves, Antennas & Propagation, Vol. 8, No. 10, 736-746, 2014.
doi:10.1049/iet-map.2013.0469

32. Winters, D. W., B. D. Van Veen, and S. C. Hagness, "A sparsity regularization approach to the electromagnetic inverse scattering problem," IEEE Trans. Antennas Propag., Vol. 58, No. 1, 145-154, Jan. 2010.
doi:10.1109/TAP.2009.2035997

33. Colton, D. and R. Kress, Inverse Acoustic and Electromagnetic Scattering Theory, Springer-Verlag, 1998.
doi:10.1007/978-3-662-03537-5

34. Bertero, M. and P. Boccacci, Introduction to Inverse Problems in Imaging, Institute of Physics, 1998.
doi:10.1887/0750304359

35. Bucci, O. M. and T. Isernia, "Electromagnetic inverse scattering: Retrievable nformation and measurement strategies," Radio Sci., Vol. 32, 2123-2138, 1997.
doi:10.1029/97RS01826

36. Chen, S., D. Donoho, and M. Saunders, "Atomic decomposition by basis pursuit," SIAM J. Sci. Comput., Vol. 20, No. 1, 33-61, 1999.
doi:10.1137/S1064827596304010

37. Tibshirani, R., "Regression shrinkage and selection via the lasso," J. Roy. Stat. Soc. Ser., Vol. 58, No. 1, 267-288, 1996.

38. Liu, Y., P. You, C. Zhu, X. Tan, and Q. H. Liu, "Synthesis of sparse or thinned linear and planar arrays generating reconfigurable multiple real patterns by iterative linear programming," Progress In Electromagnetics Research, Vol. 155, 27-38, 2016.
doi:10.2528/PIER15120401

39. Brancaccio, A., G. Leone, and R. Solimene, "Single-frequency subsurface remote sensing via a non-cooperative source," Journal of Electromagnetic Waves and Applications, Vol. 30, No. 9, 1-15, 2016.
doi:10.1080/09205071.2016.1182086

40. Gennarelli, G., R. Solimene, F. Soldovieri, and M. G. Amin, "Three-dimensional through-wall sensing of moving targets using passive multistatic radars," IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, Vol. 9, No. 1, 141-148, Jan. 2016.
doi:10.1109/JSTARS.2015.2443078

41. Bevacqua, M. T. and R. Scapaticci, "A compressive sensing approach for 3D breast cancer microwave imaging with magnetic nanoparticles as contrast agent," IEEE Transactions on Medical Imaging, Vol. 35, No. 2, 665-673, Feb. 2016.
doi:10.1109/TMI.2015.2490340

42. Soldovieri, F., A. Brancaccio, G. Leone, and R. Pierri, "Shape reconstruction of perfectly conducting objects by multiview experimental data," IEEE Trans. on Geosci. and Remote Sens., Vol. 43, No. 1, 65-71, Jan. 2005.
doi:10.1109/TGRS.2004.839432

43. Belkebir, K. and M. Saillard, "Special section: Testing inversion algorithms against experimental data," Inverse Probl., Vol. 7, 1565-2028, 2001.
doi:10.1088/0266-5611/17/6/301

44. CVX Research, Inc., , CVX: Matlab software for disciplined convex programming, 2.0, http://cvxr.com/cvx, Apr. 2011.

45. Grant, M. and S. Boyd, "Graph implementations for non smooth convex programs," Lecture Notes in Control and Information Sciences, 95-110, Chapter Recent Advances in Learning and Control (a tribute to M. Vidyasagar), Springer, 2008.
doi:10.1007/978-1-84800-155-8_7

46. Richmond, J., "Scattering by a dielectric cylinder of arbitrary cross section shape," IEEE Trans. Antennas Propag., Vol. 13, No. 3, 334-341, 1965.
doi:10.1109/TAP.1965.1138427

47. Wirgin, A., "The inverse crime," ArXiv Mathematical Physics e-prints, Jan. 2004.