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Shape Reconstruction via Equivalence Principles, Constrained
Inverse Source Problems and Sparsity Promotion

Martina T. Bevacqua1 and Tommaso Isernia1, 2, *

Abstract—A new approach for position and shape reconstruction of both penetrable and impenetrable
objects from the measurements of the scattered fields is introduced and described. The approach takes
advantage of the fact that for perfect electric conductors the induced currents are localized on the
boundary, and equivalent sources also placed on the surface of the scatterers can be considered in the
case of dielectric targets by virtue of the equivalence theorem. Starting from these considerations, a
new inversion approach is formulated in order to retrieve the location and the boundary of unknown
objects. Examples with both numerical and experimental data are given to demonstrate and assess the
effectiveness of the method.

1. INTRODUCTION

The reconstruction of partial information on unknown obstacles (i.e., location, size and shape), starting
from the measurements of the fields which they scatter under preset illumination conditions, is relevant
in several imaging and diagnostics applications. This is for instance the case of non-destructive testing,
civil and military surveillance and underground prospecting, as well as biomedical imaging [1–3].

A number of approaches to this kind of problem are based on the so-called qualitative methods [4].
Among them, the most popular qualitative approaches are the multiple signal classification (MUSIC)
for point-like targets [5–7], decomposition of time reversal operator (DORT) and time reversal (TR)
based methods for small size objects [8, 9], linear sampling method (LSM) [10–12], factorization method
(FM) [13, 14] and point source method [15] for generic scatterers. These methods rely on an indicator
function computed on the (properly sampled) imaging domain through an auxiliary linear problem,
whose values determine whether the tested point lies inside or outside the scatter. Other methods for
support reconstruction of scatterers include level set method [16, 17] as well as more specific approaches
in the case of perfect electric conducting (PEC) targets [18–22].

In this paper, a new qualitative approach for the reconstruction of presence, location and shape
of both penetrable and impenetrable objects is introduced and described. Notably, the approach does
not require the exact knowledge of the field impinging on the obstacles but, rather, the knowledge of
scattered fields under a sufficiently large number of different scattering experiments. In the case of PEC
obstacles, the approach takes advantage of the fact that the induced currents are null inside the target
except for the boundary of the target [23]. In the case of penetrable obstacles, the circumstance that
the scattered field can be thought as generated from equivalent currents lying (again) on the obstacle
boundary [23] is properly exploited. As a consequence, although the induced currents are expected
to be different from zero in each point belonging to support of the target, they can be removed and
substituted by equivalent sources located only on the boundary.

Starting from these premises and taking advantage of the recent Compressive Sensing (CS)
theory [24], in the following an efficient inversion technique for location and shape reconstruction is
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developed for both cases of conductive and dielectric obstacles. CS is a very appealing tool for inverse
problem in electromagnetism, as confirmed by the large number of papers published on relevant journals
(see e.g., [21, 25–32]). In the proposed approach, an auxiliary variable is introduced to develop an ad
hoc compressive sensing inspired inversion approach. The latter contemporarily enforces a coherence
between the surface currents pertaining to the different scattering experiments and plays the role of a
‘boundary’ indicator.

The paper is organized as follows. In Section 2, the basic mathematical formulation of the inverse
scattering problem is recalled. In Sections 3 and 4, the proposed approach is introduced and described
in detail for PEC and dielectric scatterers, respectively, while in Section 5 general comments are
given. Finally, in Section 6 an assessment of performances is provided using benchmark numerical
and experimental data. Conclusions follow.

Throughout the paper we consider the canonical 2D scalar problem (TM polarized fields), and we
assume and drop the time harmonic factor exp{jωt}.

2. STATEMENT OF THE PROBLEM

Let Ω denote the compact, possibly not connected, support of an unknown object with relative
permittivity εs and electric conductivity σs, embedded in a homogeneous medium with permittivity
εb and conductivity σb. The magnetic permeability is everywhere equal to that of the free space μ0.
The unknown scatterer is probed with a set of incident fields Einc, each one generated by some antennas
located in rt on a closed curve ΓTX (e.g., a circumference), while the scattered fields are measured by
means of receiving antennas located at rm∈ΓRX (see Figure 1). Based on the above, the equations
describing the scattering problem can be expressed as [33]:
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where:

• Escatt and Etot are the scattered fields measured on ΓRX and the total field induced inside the
investigation domain D (r ∈ D), respectively;

• χ = εs(r)−jσs(r)/(ωε0)
εb(r)−jσb(r)/(ωε0) − 1 is the contrast function which encodes the electromagnetic properties of

the unknown object;
• W = χEtot are the contrast sources, i.e., the currents induced inside the target;
• Gb is Green’s function pertaining to the background medium which relates the electric contrast

currents to electric field;
• Ae and Ai are a short notation for the integral external and internal radiation operators,

respectively.

Note that if the background is the free space, Gb(rm, r
′
) = −jk2

b/4H
2
0 (kb|rm − r

′ |), with H2
0 being the

zero order and second kind Hankel function and kb the wavenumber in the host medium.
The inverse obstacle problem consists in estimating the presence, location and shape of the

unknown object (i.e., the support Ω of χ), from the (noise corrupted) measured scattered field
Escatt. It is different from the more general inverse medium problem, wherein both morphological
and electromagnetic parameters are sought. Unfortunately, even looking just for the support of χ, the
problem is nonlinear [19, 34]. Moreover, it is also ill-posed because of the properties of the involved
operators. In fact, [35] shows that only a finite number of scattering experiments, each carrying a finite
amount of information, can be actually performed. In doing so, care has to be taken in choosing the
positions rt of the T transmitting probes and those of the M receiving ones, rm, in such a way to collect
all the available information in a non-redundant fashion.
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Figure 1. Pictorial view of the multiview-multistatic measurement configuration adopted to collect
the scattering experiments. Different incident fields are generated by T different transmitting probes
(circles) located on a circumference outside the investigation domain and centered with respect to it,
while a set of M receivers (triangles), also located on a circumference outside the investigation domain,
collect the scattered field data.

It is worth noting that whatever the performed scattering experiments are, the support of the
induced currents W is always the same, and it is exactly equal to the support of the unknown scatterer.
In order to estimate the actual support of the scatterer, one can consider the corresponding inverse
source problem, which aims at recovering the currents W from the knowledge of (noise corrupted)
measured scattered field Escatt. By doing so, the problem can be dealt with as a linear one by just using
Equation (1). However, as well known, such a simplified approach cannot work properly. In fact, each
single inverse source problem is severely ill-posed, as very many different contrast sources can produce
the same scattered field. On the other hand, as discussed in the next sections, some decisive profit can
be gained by enforcing the expected properties of these currents and the proper coherence relationships
among them.

3. SHAPE RECONSTRUCTION OF METALLIC TARGETS

It is well known that when a generic electromagnetic field is propagating in the space in presence of
obstacles, it induces, inside the obstacles, some currents, which in turn become sources of the scattered
field.

In the case of metallic and/or impenetrable objects, the induced currents are surface currents, and
they only exist on the boundary of Ω. In fact, for metallic targets the skin depth is very small, and the
induced currents are null inside the scatters but for their contours. As such, these currents occupy a
small part of the investigation domain, so they can be considered sparse in a pixel basis representation†.

Starting from these considerations, a possible approach for imaging the shape of a PEC can be
conceived by looking for the sparsest distribution of currents consistent with the measured data. In
fact, the request for sparseness will push towards surface scatterers enclosing the minimum possible
area, while the need of data fitting would avoid underestimation of the scatterer support.

In such an approach, one has to minimize the number of pixels where the current is different
from zero (i.e., the so called �0 norm of the currents‡) while guaranteeing an adequate data fitting on
the field generated by the current itself. Unfortunately, such a strategy is not viable, as one should
consider a combinatorial problem where all the different possible current support configurations should
† A signal is said to be sparse in a given basis, if it can be exactly represented by means of a few non-zero elements.
‡ The so called ‘�0 norm’, which is not actually a norm in a strict mathematical sense, measures the number of non-zero elements of
a given representation basis (see [24] for more details).
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be separately tested. On the other hand, advantage can be taken from the recent Compressive Sensing
theory [24]. According to the theory, provided that a number of conditions are fulfilled [24], the
sparsest solution to a linear problem can in fact be found by minimizing the �1 norm rather than
the �0 one [24, 36, 37]. By doing so, the shape reconstruction problem can be eventually reduced to
the well-known Basis Pursuit denoising or LASSO (Least Absolute Shrinkage and Selection Operator)
problem [36, 37], i.e.:

min ‖W (r, rt)‖1

s.t. ‖Escatt (rm, rt) −Ae [W (r, rt)]‖2 ≤ δ,
(3)

where ‖•‖p denotes the �p-norm, and δ is a parameter which depends on the desired accuracy and the
amount of noise on the data.

Notably, the optimization problem in Eq. (3) belongs to the class of Convex Programming [36, 37]
problems. As such, it has a single optimal value, which can be reached by any off the shelf local
optimization procedure.

Unfortunately, because of the limited number of independent data that one can collect in a single
experiment, the simple formulation (3) is not sufficient to get a satisfactory retrieval. In other words,
the request for sparseness implied by Eq. (3) is not sufficient to regularize the problem, so that the
solution of Eq. (3) may not be unique, and the presumed solution will not generally correspond to the
actual ground truth.

A possible idea to overcome such a difficulty amounts then to consider the information available from
different and independent experiments and enforcing a congruity among the corresponding currents.
To this end, advantage is taken in the following of the fact that, in each scattering experiment, the
unknown currents in Eq. (3) have the same support Ω of unknown scatterers and are always localized
on its boundary.

In order to enforce this coherence among all different experiments, an auxiliary variable B can be
defined as the upper bound, common to the different scattering experiments, to the amplitudes of the
electric currents W (r), i.e.,

B (r) = max
rt

|W (r, rt)| (4)

where t = {1, 2, . . . , T}. Then, one can enforce sparsity of B (rather than the different W (r, rt)), and
the boundary retrieval problem at hand can be conveniently recast as:

min ‖B(r)‖1

s.t. ‖Escatt (rm, rt) −Ae [W (r, rt)]‖2 ≤ δ
(5)

In fact, the quest for sparsity of B will have two contemporary beneficial effects. First, it will enforce
sparsity of the currents of each single experiment. Second and more important, it will enforce a congruity
among the supports of the different currents pertaining to the considered experiments. Notably, as the
definition of the function B in Eq. (4) (which is common to all scattering experiments) can also be
written as:

|W (r, rt)| ≤ B (r) , ∀rt (6)

the optimization problem in Eq. (5) still belongs to the class of Convex Programming problems, with
the inherent advantages.

The proposed approach in Eq. (5) takes inspiration from the one suggested in [38] for the synthesis
of sparse reconfigurable arrays, and it is instead deeply different from what is usually done in Bayesian
based approaches, which take into account the expected relations among correlated information by
means of a probabilistic framework [21]. Also note that the approach is deeply different from other
inverse source based imaging techniques such as [39, 40]. In fact, in the latter the results of the different
inverse source problems are somehow merged a posteriori, whereas we enforce congruity amongst the
different currents from the beginning, by defining a unique function B.

4. SHAPE RECONSTRUCTION OF DIELECTRIC OBSTACLES

In the case of dielectric scatterers, the induced currents are expected different from zero in each point
belonging to Ω. Nevertheless, by virtue of the equivalence theorem [23], in each scattering experiment
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the induced sources W can be removed and substituted by equivalent sources, i.e., electric Ws and
magnetic Wm,s surface currents also distribute over the boundary of Ω. So, for each experiment the
measured scattered fields Escatt can be written as the sum of the contributions due to both Ws and
Wm,s, i.e.,

Escatt (rm,rt) =
∫
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)
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where GEE
b and GEH

b are, respectively, the electric current to electric field Green’s function and the
magnetic current to electric field Green’s tensor, while AEE

e and AEH
e are the corresponding short

notations of the integral external operators. Obviously, GEH
b can be decomposed in two different

contributions corresponding to the x and y components of Wm,s.
By virtue of Eq. (7), also in the case of dielectric target, one can consider currents distributed on

∂Ω and, hence, sparse in a pixel basis representation. Consequently, similarly to the above introduced
approach, the inverse problem at hand can be faced as the solution of the following optimization scheme:

min ‖B(r)‖1

s.t.
∥∥Escatt (rm, rt) −AEE

e [Ws (r, rt)] −AEH
e [Wm,s (r, rt)]

∥∥
2
≤ δ

|Ws (r, rt)| ≤ B (r) , ∀rt (8)

|Wm,s (r, rt)|
ζ

≤ B (r) , ∀rt

wherein t = {1, 2, . . . , T} and the constraints take into account both the electric and magnetic equivalent
sources. In particular, the scale factor ζ =

√
μb/εb is considered in order to take into account different

measurement units of magnetic and electric currents.
It is important to underline that, as in the corresponding PEC case, the optimization problem in

Eq. (8) is a Convex Programming problem.

5. GENERAL COMMENTS

In both optimization problems in Eqs. (5) and (8), the B variable does not depend on the position rt of
the transmitting antennas but on the coordinates of the adopted mesh grid. Moreover, it is expected to
be null ∀r ∈Ω but for the boundary ∂Ω. For this reason, the B variable plays the role of a ‘boundary’
indicator.

It is important to underline that the estimated support is the result of a tradeoff between the search
of an accurate fitting of the field data and the quest for a maximally sparse solution. In fact, at least
for the case of convex scatterers, the sparsity promotion guarantees that the estimated support does
not exceed the true one, as this circumstance will entail a higher value of the objective function. On
the other hand, the request of matching the data with respect to a given accuracy allows getting rid of
solutions having smaller support. In fact, the smaller the source is, the lower the spectral content of
the corresponding radiated field is, so that a source smaller than the actual one will unable to fit the
measured data properly. In this respect, the choice of δ parameter determines the right weight between
these two aspects§. Then, the proposed approach for retrieving the shape of both metallic and dielectric
targets is expected to estimate at least their convex hull.

It is worth noting that the proposed technique can be easily extended to a huge variety of different
measuring configurations. In fact, all needed is the knowledge of scattered fields under a sufficiently large
number of different incident fields. As a consequence, the approach can be applied in a straightforward
fashion to the case where different experiments are performed at different frequencies (rather than
with different incident angles). Also, the approach can be applied to any combination of different
§ In the following, this parameter is set according to the rules described in [41].
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primary sources and different frequencies (see also the last part of the numerical analysis, in particular
Subsection 6.2). In fact, the solution approach in Eq. (5) can be easily generalized to:

min ‖B(r)‖1

s.t.
∥∥∥E

(υ)
scatt (rm) −Ae

[
W (υ) (r)

]∥∥∥
2
≤ δ (9)

∣∣∣W (υ) (r)
∣∣∣ ≤ B (r) , ∀υ ∈ Υ

where υ spans the set Υ of different considered experiments, e.g., multiview-multistatic or multifrequency
experiments, or a combination of them. The same extension can be obviously applied to the problem
in Eq. (8).

Note that such a flexibility appears to be a specific advantage of the proposed technique. In fact,
sampling methods, such as LSM and FM [11–14], require a single frequency multiview (multistatic)
configuration, while the Physical Optics based approach in [19, 42] is based on single-view multifrequency
experiments.

As a final comment, it is worth to note that, as in other inverse source based imaging procedures
(see for example [39, 40]), the approach does not require an exact knowledge of the incident fields.

6. NUMERICAL AND EXPERIMENTAL ASSESSMENTS

In order to show the validity and investigate the performances of the proposed inversion approaches,
some numerical examples dealing with both simulated and experimental data are addressed. In all of
them, no a priori information on position and dimension of the scatterers is assumed. In particular,
Subsection 6.1 deals with the experimental data provided by the Institute Fresnel of Marseille [43],
while Subsection 6.2 is aimed at emphasizing some unconventional capability of the proposed approach
using numerically simulated data. The numerical implementation of the two proposed approaches takes
advantage of the CVX Matlab R© toolbox [44, 45], a general software for convex programming.

To test the performances of the method, we compare the obtained results with the standard LSM
indicator, widely adopted in microwave imaging [11, 12].

6.1. Assessing the Method Using Single Frequency Experimental Data

In this subsection, two 2001 Fresnel data sets are considered, in particular:

- the DielTM target, which consists of one dielectric cylinders of radius 1.5 cm and relative
permittivity 3 ± 0.3;

- RectTM Dece target, which is a rectangular metallic targets of 25.4 × 12.7 mm2 not centered with
respect to the azimuthal positioner axis.

A complete description of the targets and measurement setup can be found in [43]. Note that
the experiments have been carried out under a partially aspect limited configuration, in which the
illuminations completely surround the targets, but for each illumination, the measurements are taken
only on the (forward) 240◦ wide angular sector [43].

Figure 2 shows the results concerning the DielTM target at a frequency of 12 GHz. The
investigation domain of 17.75×17.75 cm2 is discretized in 40×40 cells. The size of processed multiview-
multistatic data matrices is equal to 18×18. Both the LSM and the proposed approach are used in order
to compare the relative performances. In particular, the data matrix is processed as described in [12] (for
LSM) and by solving the problem in Eq. (8), respectively. As can been observed in Fig. 2(a), the LSM
method does not work properly, as the amount of data is not enough to retrieve useful information [35].
In fact, it provides an indicator map not monotonically increasing outside the actual support of the
scatterer. On the contrary, the proposed approach gives back accurate results in term of both shape and
dimension (Figs. 2(b)–(c)). Notably, unlike LSM or FM, this indicator easily identifies the boundaries
of the cylinder, without the need of selecting a fixed threshold in order to discriminate between points
belonging and not belonging to the target support.
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(a) (b) (c)

Figure 2. The Fresnel DielTM target at 12 GHz. (a) The map (in dB) of the standard LSM
indicator. The boundary indicators retrieved by approach (8) by considering (b) δ = 0.35‖Escatt‖2

and (c) 0.5‖Escatt‖2.

(a) (b) (c)

Figure 3. The Fresnel RectTM Dece target at 16 GHz. (a) The map (in dB) of the standard LSM
indicator (T = M = 18). The boundary indicators retrieved by approach (5) by considering (b)
T = M = 18 and (c) T = M = 15 (δ = 0.45‖Escatt‖2).

In order to understand the role of δ parameter, in Fig. 2 two reconstructions are shown by
considering two different values. In agreement with [41], some artifacts, consisting in isolated and
randomly located pixels, exist in the background media when the δ value is too low.

The same observations also hold true for the RectTM Dece target (see Fig. 3). In this case, the
working frequency is selected equal to 16 GHz, while the number of cells considered to discretize the
domain is equal to 60 × 60. The data are organized firstly in a 18 × 18 matrix and then in a 15 × 15
matrix. As can be seen, also with a reduction of 30% of the total amount of independent data [35], the
proposed method in Eq. (5) still works properly.

6.2. Assessing Performances Using Unconventional Experiments and Multi-Frequency
Data

The approach allows dealing with unconventional scattering experiments as well as multi-frequency
data.

In all the cases that follow, the scattered field data are simulated by means of a full-wave forward
solver based on the method of moments and corrupted with a random Gaussian noise with SNR = 20dB.
The investigation domain D is supposed to be a square of side L =0.1775 m hosted in free space.
Moreover, the receivers are located on a circumference of radius 0.76 m, while the transmitters on
a circumference of radius 0.72 m. Without any loss of generality, filamentary currents are used as
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(a) (b) (c)

(d) (e) (f)

Figure 4. The cylindrical target. (a) The reference contrast profile. (b) The map (in dB) of
the standard LSM indicator (T = M = 18). The boundary indicators retrieved by considering (c)
T = M = 18, (d) M = 18 and 18 arbitrary illuminations, (e) T = M = 18 and multifrequency data
(14–15 GHz), (f) T = M = 9 and multifrequency data (13–16 GHz) (δ = 0.5‖Escatt‖2).

transmitting and receiving probes.
In the first example, a dielectric cylinder of diameter 3 cm centered inside the domain is considered

(see Fig. 4(a)). In order to provide an accurate data simulation while reducing the computational
burden associated to the inverse problem, the domain is discretized in 202 × 202 cells in the forward
problem [46] and in 52× 52 pixels in the inverse problem. Notably, such a circumstance also avoids any
“inverse crime” [47].

First, the working frequency is fixed to 14 GHz and T = M = 18. As for the experimental data
in Subsection 6.1, the simulated 18 × 18 data matrix is processed by means of both the LSM and
the proposed approach, in particular by Equation (8). Again, the LSM does not retrieve a reliable
map (Fig. 4(b)), while the reconstruction obtained by means of the proposed method is very accurate
(Fig. 4(c)).

Then, in order to verify the robustness of the method with respect to the knowledge of incident
fields, the proposed approach is applied to the same profile by considering as incident fields 18 random
combinations of the previous ones. By using Eq. (9) (or better, its extension to the case of penetrable
scatterers) and without using any information on the considered incident fields, the reconstructions
shown in Fig. 4(d) are finally achieved. As can be noted, even though some artifacts are present (which
can be attributed to the lack of independence amongst the different experiments), the boundary of the
cylinder is again correctly estimated.

Furthermore, the approach is tested in the case of multifrequency data, by processing all the data
pertaining to both 14 GHz and 15 GHz, and by looking for a unique indicator B(r) for the two frequencies
(see the approach in Eq. (9)). As can be seen in Fig. 4(e), the proposed method retrieves an even more
accurate boundary indicator with respect to the case of single-frequency data.

In order to emphasize the capability of the approach to deal with any combination of multiview and
multifrequency data, the data corresponding to scattered fields collected by considering T = M = 9 and
four different frequencies (from 13 to 16 GHz, with a step of 1 GHz) are also processed. Note that if only
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(a) (b)

(c) (d)

x/λ

y/
λ

Figure 5. The non-convex target. (a) The reference contrast profile. (b) The map (in dB) of
the standard LSM indicator (T = M = 24). The boundary indicators retrieved by considering (c)
T = M = 24 and (d) T = M = 24 and multifrequency data (14–15 GHz) (δ = 0.5‖Escatt‖2).

the data corresponding to 14 GHz and T = M = 9 are processed, the proposed method does not give
a reliable indicator because of the very low number of independent measurements. On the contrary,
by adding information from multifrequency experiments and processing all the four frequencies, the
indicator correctly identifies the cylinder but with some spurious pixel in the background (see Fig. 4(f)).

Finally, in order to explore the possible performances of the approach in the case of non-convex
targets, an obstacle composed of two lossless dielectric cylinders of diameter 3 cm in close contact with
each other is considered. The investigation domain is discretized in 202 × 202 cells in the forward
problem and in 60 × 60 pixels in the inverse problem. The corresponding results are shown in Fig. 5
both in the case of singlefrequency and multifrequency data.

As can be seen, unlike the LSM, the new boundary indicator is able to accurately retrieve the
shape of the two cylinders especially in the case of multi-frequency data (see Fig. 5(d)). This is an
interesting circumstance, as the request of sparsity enforced in Eq. (8) should induce the reconstruction
of the sparsest contour, i.e., the convex hull of the unknown target. Nevertheless, the use of �1 norm
instead of �0 norm (in order to deal with a convex problem) allows the reconstruction of more details
of the target. Obviously, a further analysis and deeper understanding of such a possible capability is
indeed needed.

7. CONCLUSION

In many relevant applications of microwave imaging, one aims at retrieving just the presence, location
and shape of the unknown target, rather than all the electromagnetic properties. This represents a
considerable advantage, as a part of the difficulties of the underlying inverse scattering problem could
be somehow avoided.

To this end, a new method for estimating the shape of both dielectric and metallic targets is here
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introduced, described and tested. The key idea is solving an auxiliary linear (ill posed) problem in terms
of a properly defined auxiliary function and enforcing the sparsity (in a pixel based representation) of
this latter. In particular, the use of this auxiliary function (acting as a boundary indicator) is related
to the fact that in both cases of metallic and dielectric targets one can assume that the measured
scattered field is radiated by some currents located on the boundary of the support of the target.
Then, the auxiliary function is defined in each pixel as the upper bound to different actual (in cases
of PEC) or equivalent (in case of penetrable scatterers) surface currents generating different scattered
fields. Notably, the requirement for sparsity of such an auxiliary function also allows the enforcement
of congruity among different experiments.

The methods do not require the knowledge of the incident fields but only some kind of diversity in
terms of incident angle and/or frequency. In fact, the extension to the case of multifrequency data just
requires the definition of a single boundary indicator for the overall frequencies. Notably, there is no
need of processing the data separately for each frequency and putting together the different indicators,
as usually done e.g., in LSM or FM. With respect to the latter, which just entail the computation of
the singular value decomposition of the data matrix [10–12], the proposed method is more onerous from
a computational point of view. In fact, it involves the solution of a constrained optimization problem
which relies on an iterative procedure. On the other hand, this is a price worth to pay in view of both
its flexibility and performances.

Future activities will be focused on a deeper understanding of the range of validity of the method
and on its exploitation in more challenging case of vector fields and 3-D scenarios, where its features
will become even more important.
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