1. Deslandes, D. and K. Wu, "Accurate modeling, wave mechanisms, and design considerations of a substrate integrated waveguide," IEEE Transactions on Microwave Theory and Techniques, Vol. 54, No. 6, 2516-2526, 2006.
doi:10.1109/TMTT.2006.875807
2. Chen, X. P. and K. Wu, "Substrate integrated waveguide filter: Basic design rules and fundamental structure features," IEEE Microwave Magazine, Vol. 15, No. 5, 108-116, 2014.
doi:10.1109/MMM.2014.2321263
3. Chen, X. P. and K. Wu, "Substrate integrated waveguide filters: Design techniques and structure innovations," IEEE Microwave Magazine, Vol. 15, No. 6, 121-133, 2014.
doi:10.1109/MMM.2014.2332886
4. Chen, X. P., K. Wu, and Z. L. Li, "Dual-band and triple-band substrate integrated waveguide filters with Chebyshev and quasielliptic responses," IEEE Transactions on Microwave Theory and Techniques, Vol. 55, No. 12, 2569-2578, 2007.
doi:10.1109/TMTT.2007.909603
5. Wang, H. Y., G. H. Li, Y. D. Wu, W. Yang, and T. Mou, "A novel triple-band lter based on triple-mode substrate integrated waveguide," Progress In Electromagnetics Research, Vol. 58, 59-65, 2016.
6. Xie, H. W., K. Zhou, C. X. Zhou, and W. Wu, "Substrate integrated waveguide triple-band bandpass filters using triple-mode cavities," IEEE Transactions on Microwave Theory and Techniques, Vol. 66, No. 6, 2967-2977, 2018.
doi:10.1109/TMTT.2018.2833462
7. Zhou, K., C. Zhou, and W. Wu, "Substrate-integrated waveguide triple-band filter with improved frequency and bandwidth allocations," Electronics Letters, Vol. 54, No. 19, 1132-1134, 2018.
doi:10.1049/el.2018.5758
8. Zhou, K., C. X. Zhou, H. W. Xie, and W. Wu, "Synthesis design of SIW multiband bandpass filters based on dual-mode resonances and split-type dual-and triple-band responses," IEEE Transactions on Microwave Theory and Techniques, Vol. 67, No. 1, 151-161, 2018.
doi:10.1109/TMTT.2018.2874250
9. Tomassoni, C., L. Silvestri, M. Bozzi, and L. Perregrini, "Substrate-integrated waveguide filters based on mushroom-shaped resonators," International Journal of Microwave and Wireless Technologies, Vol. 8, No. 4-5, 741-749, 2016.
doi:10.1017/S1759078716000453
10. Awasthi, S., A. Biswas, and M. Jaleel Akhtar, "A CAD model of triple bandpass filter implemented with mushroom structure," International Journal of RF and Microwave Computer-Aided Engineering, Vol. 24, No. 4, 421-428, 2014.
doi:10.1002/mmce.20780
11. Chaudhury, S. S., S. Awasthi, and R. K. Singh, "Dual band bandpass filter based on substrate integrated waveguide loaded with mushroom resonators," Microwave and Optical Technology Letters, Vol. 62, No. 6, 2226-2235, 2020.
doi:10.1002/mop.32315
12. Chaudhury, S. S., S. Awasthi, and R. K. Singh, "Independent control over resonating modes of mushroom resonator loaded substrate integrated waveguide using perturbation slots," 2019 IEEE Indian Conference on Antennas and Propagation (InCAP), 1-4, IEEE, 2019.
13. Wu, Y., Y. Chen, L. Jiao, Y. Liu, and Z. Ghassemlooy, "Dual-band dual-mode substrate integrated waveguide lters with independently recongurable TE101 resonant mode," Scientic Reports, Vol. 6, No. 1, 1-10, 2016.
doi:10.1038/s41598-016-0001-8
14. Lee, T. H., B. Lee, S. Nam, Y. S. Kim, and J. Lee, "Frequency-tunable tri-function filter," IEEE Transactions on Microwave Theory and Techniques, Vol. 65, No. 11, 4584-4592, 2017.
doi:10.1109/TMTT.2017.2716931
15. Zhang, Q. L., S. Adhikari, B. Z. Wang, and K. Wu, "A recongurable dual-mode bandpass filter based on substrate integrated waveguide," Microwave and Optical Technology Letters, Vol. 59, No. 4, 934-937, 2017.
doi:10.1002/mop.30434
16. Hinojosa, J., A. Saura-Rodenas, A. Alvarez-Melcon, and F. L. Martinez-Viviente, "Recongurable Coplanar Waveguide (CPW) and Half-Mode Substrate Integrated Waveguide (HMSIW) bandstop filters using a varactor-loaded metamaterial-inspired open resonator," Materials, Vol. 11, No. 1, 39, 2018.
doi:10.3390/ma11010039
17. You, B., S. Lu, L. Chen, and Q. J. Gu, "A half-mode substrate integrated filter with tunable center frequency and reconfigurable bandwidth," IEEE Microwave and Wireless Components Letters, Vol. 26, No. 3, 189-191, 2016.
doi:10.1109/LMWC.2016.2526031
18. Guo, J., B. You, and G. Q. Luo, "A miniaturized eighth-mode substrate-integrated waveguide filter with both tunablecenter frequency and bandwidth," IEEE Microwave and Wireless Components Letters, Vol. 29, No. 7, 450-452, 2016.
doi:10.1109/LMWC.2019.2916780
19. Lan, B., C. Guo, and J. Ding, "A fully tunable two-pole bandpass filter with wide tuning range based on half mode substrate integrated waveguide," Microwave and Optical Technology Letters, Vol. 60, No. 4, 865-870, 2018.
doi:10.1002/mop.31058
20. Iqbal, A., J. J. Tiang, C. K. Lee, N. K. Mallat, and S. W. Wong, "Dual-band half mode substrate integrated waveguide filter with independently tunable bands," IEEE Transactions on Circuits andSystems II: Express Briefs, Vol. 67, No. 2, 285-289, 2019.
21. Sam, S. and S. Lim, "Tunable band-pass filters based on varactor-loaded complementary split- ring resonators on half-mode substrate integrated waveguide," Microwave and Optical Technology Letters, Vol. 55, No. 10, 2458-2460, 2013.
doi:10.1002/mop.27810
22. Anand, A., J. Small, D. Peroulis, and X. Liu, "Theory and design of octave tunable filters with lumped tuning elements," IEEE Transactions on Microwave Theory and Techniques, Vol. 61, No. 12, 4353-4364, 2013.
doi:10.1109/TMTT.2013.2287674
23. Zhou, C. X., C. M. Zhu, and W.Wu, "Tunable dual-band filter based on stub-capacitor-loaded half-mode substrate integrated waveguide," IEEE Transactions on Microwave Theory and Techniques, Vol. 65, No. 1, 147-155, 2016.
doi:10.1109/TMTT.2016.2613053
24. Zhao, D. and L. Li, "A dual-mode SIW filter with tunable frequency, recongurable bandwidth and adjustable transmission zero," 2018 International Applied Computational Electromagnetics Society Symposium-China (ACES), 1-2, IEEE, Jul. 29, 2018.
25. Li, L., D. Zhao, J. Bai, Q. Wang, and Z. Lei, "A tunable third-order bandpass filter based on combining dual-mode square shaped substrate integrated waveguide resonator with triangular shaped resonator," International Journal of RF and Microwave Computer-Aided Engineering, Vol. 29, No. 1, e21454, 2019.
doi:10.1002/mmce.21454
26. Nam, S., B. Lee, and J. Lee, "Recongurable bandpass filter topology using cul-de-sac resonators with adjustable notches," 2016 IEEE MTT-S International Microwave Symposium (IMS), 1-4, IEEE, May 22, 2016.
27. Lee, B., S. Nam, B. Koh, C. Kwak, and J. Lee, "K-band frequency tunable substrate-integrated- waveguide resonator filter with enhanced stopband attenuation," IEEE Transactions on Microwave Theory and Techniques, Vol. 63, No. 11, 3632-3640, 2015.
doi:10.1109/TMTT.2015.2483495
28. Sekar, V., M. Armendariz, and K. Entesari, "A 1.2-1.6-GHz substrate-integrated-waveguide RF MEMS tunable filter," IEEE Transactions on Microwave Theory and Techniques, Vol. 59, No. 4, 866-876, 2011.
doi:10.1109/TMTT.2011.2109006
29. Sekar, V. and K. Entesari, "A half-mode substrate-integrated waveguide tunable filter using packaged RF MEMS switches," IEEE Microwave and Wireless Components Letters, Vol. 22, No. 7, 336-338, 2012.
doi:10.1109/LMWC.2012.2199976
30. Mira, F., J. Mateu, and C. Collado, "Mechanical tuning of substrate integrated waveguide resonators," IEEE Microwave and Wireless Components Letters, Vol. 22, No. 9, 447-449, 2012.
doi:10.1109/LMWC.2012.2208735
31. Mira, F., J. Mateu, and C. Collado, "Mechanical tuning of substrate integrated waveguide filters," IEEE Transactions on Microwave Theory and Techniques, Vol. 63, No. 12, 3939-3946, 2015.
doi:10.1109/TMTT.2015.2490144
32. Zhang, H., W. Kang, and W. Wu, "Balanced bandpass filter with tunable centre frequency based on substrate integrated waveguide technology," Electronics Letters, Vol. 54, No. 14, 886-888, 2018.
doi:10.1049/el.2018.0273
33. Dong, Y., C. T. Wu, and T. Itoh, "Miniaturised multi-band substrate integrated waveguide filters using complementary split-ring resonators," IET Microwaves, Antennas & Propagation, Vol. 6, No. 6, 611-620, 2012.
doi:10.1049/iet-map.2011.0448
34. Chaudhury, S. S. and S. Awasthi, "Multiple passband circular cavity substrate integrated waveguide filter using asymmetric complementary split ring resonators," 2017 IEEE Asia Pacic Microwave Conference (APMC), 1246-1249, IEEE, Nov. 13, 2017.
35. Azad, A. R. and A. Mohan, "Single-and dual-band bandpass filters using a single perturbed SIW circular cavity," IEEE Microwave and Wireless Components Letters, Vol. 29, No. 3, 201-203, 2019.
doi:10.1109/LMWC.2019.2893379
36. Sievenpiper, D., L. Zhang, R. F. Broas, N. G. Alexopolous, and E. Yablonovitch, "High-impedance electromagnetic surfaces with a forbidden frequency band," IEEE Transactions on Microwave Theory and Techniques, Vol. 47, No. 11, 2059-2074, 1999.
doi:10.1109/22.798001
37. Tang, H. J., W. Hong, J. X. Chen, G. Q. Luo, and K. Wu, "Development of millimeter-wave planar diplexers based on complementary characters of dual-mode substrate integrated waveguide filters with circular and elliptic cavities," IEEE Transactions on Microwave Theory and Techniques, Vol. 55, No. 4, 776-782, 1999.
doi:10.1109/TMTT.2007.893655
38. Liu, Q., D. F. Zhou, D. W. Zhang, and D. L. Lv, "SIW bandpass filters in modied box-section scheme with bypass/constant/frequency dependent coupling in diagonal cross-coupling path," IET Microwaves, Antennas & Propagation, Vol. 13, No. 5, 559-566, 2019.
doi:10.1049/iet-map.2018.5361
39. Rosenberg, U. and S. Amari, "Novel design possibilities for dual-mode filters without intracavity couplings," IET Microwaves, Antennas & Propagation, Vol. 12, No. 8, 296-298, 2002.
40. Amari, S. and U. Rosenberg, "Characteristics of cross (bypass) coupling through higher/lower order modes and their applications in elliptic filter design," IEEE Transactions on Microwave Theory and Techniques, Vol. 53, No. 10, 3135-3141, 2005.
doi:10.1109/TMTT.2005.855359
41. Hong, J. S. and M. J. Lancaster, Microstrip Filters for RF/Microwave Applications, John Wiley & Sons, Apr. 7, 2004.
42. Dong, Y., C. T. Wu, and T. Itoh, "Miniaturised multi-band substrate integrated waveguide filters using complementary split-ring resonators," IET Microwaves, Antennas & Propagation, Vol. 6, No. 6, 611-620, 2012.
doi:10.1049/iet-map.2011.0448