Vol. 100
Latest Volume
All Volumes
PIERB 109 [2024] PIERB 108 [2024] PIERB 107 [2024] PIERB 106 [2024] PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2023-05-15
Computation of Spectral-Domain Green's Functions of the Infinitesimal Current Source in a Planar Multilayer Medium
By
Progress In Electromagnetics Research B, Vol. 100, 55-71, 2023
Abstract
This paper presents a novel theoretical and numerical approach for an infinitesimal current source (ICS) located in a planar isotropic multilayer medium. Using the mixed-potential integral equation (MPIE) formulation for depicting the electromagnetic disturbance created by the ICS, a detailed definition of Green's functions of Lorenz potentials and fields is provided in this paper. The proposed Green's functions are valid for the considered multilayer isotropic medium, which can have arbitrary layer parameters. This paper also analyzes two commonly observed special cases of the multilayer medium - the multilayer soil including air and the multilayer lossless dielectric - and the proposed equations are modified to meet the requirements of the medium. Green's functions can be obtained from the systems of linear equations proposed in this study. In comparison to other approaches, the advantage of the proposed procedure is that the solutions of the equations are immediately obtained in any field layer of the multilayer medium. In addition, the proposed system of linear equations can be solved easily using well-known numerical computation methods. Furthermore, this paper offers an alternative way of obtaining Green's functions, which are closed-form expressions for the kernels of spectral-domain Green's functions.
Citation
Slavko Vujević, and Ivan Krolo, "Computation of Spectral-Domain Green's Functions of the Infinitesimal Current Source in a Planar Multilayer Medium," Progress In Electromagnetics Research B, Vol. 100, 55-71, 2023.
doi:10.2528/PIERB23032005
References

1. Michalski, K. A., "The mixed-potential electric field integral equation for objects in layered media," AEU --- Archiv fur Elektronik und Ubertragungstechnik, Vol. 39, 317-322, Sept./Oct. 1985.

2. Michalski, K. A. and D. Zheng, "Electromagnetic scattering and radiation by surfaces of arbitrary shape in layered media, Part I: Theory," IEEE Transactions on Antennas and Propagation, Vol. 38, 335-344, Mar. 1990.
doi:10.1109/8.52240

3. Hsu, C.-I. G., R. F. Harrington, K. A. Michalski, and D. Zheng, "Analysis of a multiconductor transmission lines of arbitrary cross-section in multilayered uniaxial media," IEEE Transactions on Microwave Theory and Techniques, Vol. 41, 70-78, Jan. 1993.
doi:10.1109/22.210231

4. Michalski, K. A. and J. R. Mosig, "Multilayered media Green's functions in integral equation formulations," IEEE Transactions on Antennas and Propagation, Vol. 45, No. 3, 508-519, Mar. 1997.
doi:10.1109/8.558666

5. Vujevic, S., I. Krolo, and D. Lovric, "Frequency domain grounding grid analysis based on the finite element technique," 2019 International Conference on Software, Telecommunications and Computer Networks (SoftCOM), 561-566, Split, Croatia, Sep. 2019.

6. Vujevic, S., I. Krolo, and D. Lovric, "Closed-form spectral-domain Green's functions for in nitesimal current source in multilayer soil," IEEE Transactions on Electromagnetic Compatibility, Vol. 62, No. 6, 2814-2822, Dec. 2020.
doi:10.1109/TEMC.2020.2992552

7. Vujevic, S., I. Krolo, and D. Lovric, "Closed-form spectral-domain Green's functions for in nitesimal current source in multilayer soil" [Dec. 20 2814{2822]," IEEE Transactions on Electromagnetic Compatibility, Vol. 64, No. 3, 902-902, Jun. 2022.
doi:10.1109/TEMC.2022.3162896

8. Chew, W. C., Waves and Fields in Inhomogeneous Media, Van Nostrand Reinhold, New York, 1990.

9. Dural, G. and M. I. Aksun, "Closed-form Green's functions for general sources in strati ed media," IEEE Transactions on Microwave Theory and Techniques, Vol. 43, 1545-1552, Jul. 1995.

10. Kinayman, N. and M. I. Aksun, Modern Microwave Circuits, Artech House, Boston, MA, 2005.

11. Patra, H. P. and K. Mallick, Geosounding Principles, 2: Time-varying Geoelectric Soundings, Elsevier, Amsterdam, 1980.

12. Michalski, K. A., "On the alternative vector potential formulation of the sommerfeld half-space problem," IEEE Antennas and Wireless Propagation Letters, Vol. 17, No. 1, 54-57, Jan. 2018.
doi:10.1109/LAWP.2017.2773362

13. Erteza, A. and B. K. Park, "Nonuniqueness of resolution of Hertz vector in presence of a boundary, and a horizontal dipole problem," IEEE Transactions on Antennas and Propagation, Vol. 17, 376-378, May 1969.
doi:10.1109/TAP.1969.1139438

14. Michalski, K. A., "On the scalar potential of a point charge associated with a time-harmonic dipole in a layered medium," IEEE Transactions on Antennas and Propagation, Vol. 35, 1299-1301, Nov. 1987.

15. Michalski, K. A., "Extrapolation methods for Sommerfeld integral tails," IEEE Transactions on Antennas and Propagation, Vol. 46, No. 10, 1405-1418, Oct. 1998.
doi:10.1109/8.725271

16. Kaifas, T. N., "Direct rational function fitting method for accurate evaluation of sommerfeld integrals in strati ed media," IEEE Transactions on Antennas and Propagation, Vol. 60, No. 1, 282-291, Jan. 2012.
doi:10.1109/TAP.2011.2167915

17. Golubovic, R., A. G. Polimeridis, and J. R. Mosig, "Efficient algorithms for computing Sommerfeld integral tails," IEEE Transactions on Antennas and Propagation, Vol. 60, No. 5, 2409-2417, May 2012.
doi:10.1109/TAP.2012.2189718

18. Golubovic, R., A. G. Polimeridis, and J. R. Mosig, "The weighted averages method for semi-in nite range integrals involving products of bessel functions," IEEE Transactions on Antennas and Propagation, Vol. 61, No. 11, 5589-5596, Nov. 2013.
doi:10.1109/TAP.2013.2280048

19. Michalski, K. A. and J. R. Mosig, "Efficient computation of Sommerfeld integral tails --- Methods and algorithms," Journal of Electromagnetic Waves and Applications, Vol. 30, No. 3, 281-317, 2016.
doi:10.1080/09205071.2015.1129915