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Computation of Spectral-Domain Green’s Functions of the
Infinitesimal Current Source in a Planar Multilayer Medium

Slavko Vujević and Ivan Krolo*

Abstract—This paper presents a novel theoretical and numerical approach for an infinitesimal current
source (ICS) located in a planar isotropic multilayer medium. Using the mixed-potential integral
equation (MPIE) formulation for depicting the electromagnetic disturbance created by the ICS, a
detailed definition of Green’s functions of Lorenz potentials and fields is provided in this paper. The
proposed Green’s functions are valid for the considered multilayer isotropic medium, which can have
arbitrary layer parameters. This paper also analyzes two commonly observed special cases of the
multilayer medium — the multilayer soil including air and the multilayer lossless dielectric — and the
proposed equations are modified to meet the requirements of the medium. Green’s functions can be
obtained from the systems of linear equations proposed in this study. In comparison to other approaches,
the advantage of the proposed procedure is that the solutions of the equations are immediately obtained
in any field layer of the multilayer medium. In addition, the proposed system of linear equations can
be solved easily using well-known numerical computation methods. Furthermore, this paper offers an
alternative way of obtaining Green’s functions, which are closed-form expressions for the kernels of
spectral-domain Green’s functions.

1. INTRODUCTION

An infinitesimal current source (ICS) creates an electromagnetic disturbance in its surroundings, i.e.,
creates an electric and magnetic field. The accurate distribution of these fields can be determined
by solving the full set of Maxwell equations directly with the electric field intensity and magnetic field
intensity. However, instead of solving the full set of Maxwell equations for the electric field intensity and
magnetic field intensity, it is possible to reduce the number of unknown values using auxiliary functions
such as electromagnetic potentials. Therefore, by introducing these auxiliary functions, the order of
the differential equations to be solved is increased, and the number of unknown quantities — now the
potentials — is decreased. There are several different ways to express these potential functions using
various gauge conditions. However, regardless of the gauge condition or the combination of potential
functions, the electric field intensity and magnetic field intensity produced by the ICS must remain the
same in all cases. This paper considers scalar electric potential (SEP) and vector magnetic potential
(VMP), connected with the Lorenz gauge condition, hence the potentials used in this paper can be
called Lorenz potentials. The obtained formulation of equations is called mixed-potentials integral
equation (MPIE) formulation [1–4]. The MPIE formulation is important in this theoretical approach
since VMP is used to define all other essential quantities: SEP, electric field intensity, and magnetic
field intensity. SEP is also important in some cases, such as grounding grid analysis based on the finite
element technique [5]. In that analysis, once the SEP of the grounding system is determined, the current
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distribution through the conductors can be computed. Consequently, the potentials and fields can be
determined at any field point in the surrounding medium.

The authors use the term infinitesimal current source instead of the often-used term electric dipole
because the observed multilayer medium can be conductive. In the case of a conducting medium,
an infinitesimal current source leaks the current into the surrounding medium. However, in an ideal
dielectric medium, the infinitesimal current source leaks the displacement current into the surrounding
medium and can be represented as an electric dipole.

The ICS can be located in the various geometries of the surrounding medium. This paper considers a
planar isotropic multilayer medium in which the effect of layer boundaries must be taken into account.
Two special cases are the multilayer soil with air and multilayer lossless dielectric. The equations
can be modified to meet the requirements, depending on the medium. Since the observed current
source is infinitesimal, the differential equations are described by the spatial-domain Green’s functions.
Satisfying the boundary conditions on the layer boundaries leads to a system of linear equations in which
kernel functions of spectral-domain Green’s functions are the unknowns. A system of linear equations
can be solved in two ways. First, it can be easily solved using well-known numerical methods for
solving the system of linear equations, e.g., Gaussian elimination, LU decomposition, and singular value
decomposition. This paper also provides an alternative method since it offers closed-form expressions
for the kernel functions [6, 7], which can be modified to meet the requirements of any isotropic multilayer
medium.

The proposed approach is different from the other approaches dealing with this topic [3, 4, 8–10],
in which the closed-form expressions for spectral-domain Green’s functions of the Lorenz potentials
in the source layer are obtained using double Fourier transformation and generalized reflection
coefficients [9, 10] or using transmission line analogy [3, 4, 8]. Subsequently, the spectral-domain Green’s
functions of the Lorenz potentials in other layers can be computed iteratively starting from the source
layer [8–10].

A system of linear equations can be obtained from the boundary conditions for the spectral-
domain Green’s functions of the Lorenz potentials. This system has more equations than unknowns.
However, by introducing the proposed kernels of spectral-domain Green’s functions, a new system of
linear equations containing the same number of equations and unknowns is obtained, and that system
has a unique numerical and analytical solution. The numerical solution for the given parameters can
be easily computed, while the proposed analytical solution requires considerable effort to obtain.

With respect to [6] and [7], a multilayer medium is generalized in this paper. This required a
generalization of the previously obtained closed-form expression for kernels of the spectral-domain
Green’s functions of the Lorenz potentials. The system of linear equations for the numerical computation
of the SEP of a vertical ICS is also novel. In addition, matrix expressions for computation of the spectral-
domain Green’s functions of the electric field intensity and magnetic field intensity are also given, which
are obtained from the spectral-domain Green’s functions of the Lorenz potentials.

2. THE INFINITESIMAL CURRENT SOURCE IN A PLANAR MULTILAYER
MEDIUM

The analysis of the infinitesimal current source (ICS) considered in this paper will be constrained to
a planar multilayer medium. This multilayer medium can consist of n layers, each linear, isotropic,
and homogeneous, from an electromagnetic standpoint. Therefore, the i-th layer is characterized by its
electric conductivity σi, electric permittivity εi, and magnetic permeability µi. The formulas developed
in this paper are written in such a way that allows the origin of the coordinate system to migrate along
the z-axis. Each i-th layer can also be characterized by its value of the wave propagation constant γ̄i
and the complex-valued electrical conductivity κ̄i, described by the following equations:

γ̄2i = j · ω · µi · κ̄i (1)

γ̄i =

√
ω · µi

2
·
(σi
N

+ j ·N
)
; N =

√
ω · εi +

√
(ω · εi)2 + σ2

i (2)

κ̄i = σi + j · ω · εi (3)
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where N is an auxiliary function, ω the circular frequency of the time-harmonic current, and j the
imaginary unit.

In the case of a homogeneous and unbounded medium, the orientation of the ICS is irrelevant.
However, in the case where layer boundaries exist, the orientation of the ICS becomes important. To
satisfy the boundary conditions, an arbitrarily oriented ICS must be divided into two components: a
horizontal infinitesimal current source (HICS) and a vertical infinitesimal current source (VICS). Both
of these sources can be located in any layer of the multilayered medium at a point T ′ = (x′, y′, z′ ≡ d).
The key number of the layer in which the current source is located is denoted by index s (Figure 1).

Figure 1. Planar multilayer medium in which the ICS is located.

In the general case, the equation for a longitudinal current Īℓ through the ICS can be described
by:

Īℓ · dℓ⃗ = Īℓx · dℓ · i⃗+ Īℓy · dℓ · j⃗ + Īℓz · dℓ · k⃗ (4)

where dℓ is the infinitesimal length of the ICS, whereas the longitudinal current components Īℓx, Ī
ℓ
y, Ī

ℓ
z,

and the unit-vector ℓ⃗0 are, respectively:

Īℓx = Īℓ · ℓ0x; Īℓy = Īℓ · ℓ0y; Īℓz = Īℓ · ℓ0z (5)

ℓ⃗0 = ℓ0x · i⃗+ ℓ0y · j⃗ + ℓ0z · k⃗ (6)

where ℓ0x, ℓ0y, and ℓ0z are x-, y-, and z-components of the ICS unit-vector, respectively. In the case of

the HICS, the longitudinal current Īℓh can be defined as:

Īℓh = Īℓ · ℓ0h; ℓ0h =
√

ℓ20x + ℓ20y (7)

where ℓ0h is the length of the unit-vector of the HICS.
Except for longitudinal current Īℓ, which flows along the current source, there is also a leakage

current that flows from the source into the surrounding medium. This can be defined by a leakage
current density τ̄ :

τ̄ = −∂ Īℓ

∂ℓ
= τ̄x + τ̄y + τ̄z = τ̄h + τ̄z (8)

and its components are defined by:

τ̄x = τ̄ · ℓ20x; τ̄y = τ̄ · ℓ20y; τ̄z = τ̄ · ℓ20z (9)

τ̄h = τ̄x + τ̄y = τ̄ · ℓ20h (10)



58 Vujević and Krolo

where τ̄x, τ̄y, and τ̄z are x-, y-, and z-components of the leakage current density, respectively, and τ̄h is
the leakage current density of the HICS.

In the case of a homogeneous and unbounded medium, the longitudinal current through the ICS
creates a VMP with the same orientation as the current source. However, in the case of a planar
multilayer medium, the longitudinal current can also create an additional VMP that can have a different
orientation from the ICS. The VMP can be obtained by satisfying the boundary conditions between the
layers, and these conditions are the continuity of tangential components of the electric field intensity
and magnetic field intensity. Once the VMP is obtained, other essential quantities can be obtained as
well. Derivation of Lorenz potential expressions, as well as the fields of the ICS, will be explained in
the following sections.

3. VERTICAL INFINITESIMAL CURRENT SOURCE (VICS)

3.1. VMP Green’s Functions for VICS

As previously mentioned, the ICS can be divided into VICS and HICS. Since the current source is
infinitesimal, the Lorenz potentials, as well as the electric field intensity and magnetic field intensity,
can be described using spatial-domain Green’s functions for each layer of the medium. The infinitesimal

VMP of the VICS A⃗
v

i in the i-th layer has only one component with which the boundary conditions can
be satisfied, and it can be written in the matrix form for the i-th layer:

dĀvx
i

dĀvy
i

dĀvz
i

 =


0
0

ḠAzz
i

 · Īℓ · ℓ0z · dℓ (11)

where ḠAzz
i is the z-component of the VMP spatial-domain Green’s function in the i-th layer; dĀvx

i ,
dĀvy

i , and dĀvz
i are x-, y-, and z-components of the infinitesimal VMP of the VICS, respectively. The

spatial-domain Green’s function of the VMP for VICS can be described by the following Helmholtz
differential equation [1, 6]:

∆ ḠAzz
i − γ̄2i · ḠAzz

i = −µi · δ
(
R⃗− R⃗′

)
(12)

where δ (R⃗− R⃗′) is the Dirac delta function, R⃗ the radius-vector of the field point with its coordinates:

R⃗ = {x, y, z} (13)

and R⃗′ the radius-vector of the source point with its coordinates:

R⃗′ =
{
x′, y′, z′ = d

}
(14)

The solution of (12), obtained by the separation of variables [11], can be written as follows [6]:

ḠAzz
i =

µi

4 · π
· S̄0

(
˜̄GAvv
i

)
(15)

where S̄0(
˜̄GAvv
i ) represents the Sommerfeld integral (SI) of VMP spectral-domain Green’s function for

the i-th layer. The definition of SIs is given in Appendix A. Hence, the VMP defined in (11) can be
written as: 

dĀvx
i

dĀvy
i

dĀvz
i

 =


0
0

ℓ0z · S̄0

(
˜̄GAvv
i

)
 · µi · Īℓ · dℓ

4 · π
(16)

where the VMP spectral-domain Green’s function ˜̄GAvv
i can be written as [6, 10, 11]:

˜̄GAvv
i = ˜̄GAvv

i

(
λ̄, z, d

)
= δi,s · e−ᾱs·|z−d| + Θ̄Avv

i · e−ᾱi·(z−zi−1) + X̄Avv
i · e−ᾱi·(zi−z) (17)
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whereas δi,s is the Kronecker delta symbol; zi−1 and zi are the z-coordinates of the upper and lower
boundaries of the i-th layer, respectively; Θ̄Avv

i and X̄Avv
i are kernel functions [6, 11], also known as

coefficients of up-going and down-going waves [1]. The complex-valued parameter:

ᾱi =
√

λ̄2 + γ̄2i (18)

is a function of the SI integration variable λ̄ and the wave propagation constant γ̄i of the i-th layer.
The boundary conditions of the VMP spatial-domain Green’s functions obtained from the continuity

of the tangential components of the electric field intensity and magnetic field intensity can be written
as [1]:

ḠAzz
i

∣∣
z=zi

= mi · ḠAzz
i+1

∣∣
z=zi

; i = 1, 2, . . . , n− 1 (19)

∂ḠAzz
i

∂z

∣∣∣∣
z=zi

= mi · q̄i ·
∂ḠAzz

i+1

∂z

∣∣∣∣∣
z=zi

; i = 1, 2, . . . , n− 1 (20)

where:
mi = µi/µi+1; q̄i = κ̄i/κ̄i+1 (21)

From (19) and (20), the expressions for the boundary conditions of the VMP spectral-domain Green’s
functions can be derived as follows:

˜̄GAvv
i

∣∣∣
z=zi

= p̄i · ˜̄GAvv
i+1

∣∣∣
z=zi

; i = 1, 2, . . . , n− 1 (22)

∂ ˜̄GAvv
i

∂z

∣∣∣∣∣
z=zi

= p̄i · q̄i ·
∂ ˜̄GAvv

i+1

∂z

∣∣∣∣∣
z=zi

; i = 1, 2, . . . , n− 1 (23)

where
p̄i = ᾱi/ᾱi+1 (24)

The unknowns in this approach are the VMP kernel functions Θ̄Avv
i and X̄Avv

i from (17), which can be
computed from the system of linear equations derived from (22) and (23) [6]:

ν̄i · Θ̄Avv
i + X̄Avv

i − p̄i · Θ̄Avv
i+1 − p̄i · ν̄i+1 · X̄Avv

i+1 = f̄v
i (25)

ν̄i · Θ̄Avv
i − X̄Avv

i − q̄i · Θ̄Avv
i+1 + q̄i · ν̄i+1 · X̄Avv

i+1 = ḡvi (26)

where i = 1, 2, . . . , n− 1, whereas:

Θ̄Avv
1 = X̄Avv

n = 0 (27)

ν̄i = e−ᾱi·hi (28)

and hi is the thickness of the i-th layer of the medium. The system of linear equations (25) and (26) is
the same as that in the case of planar multilayer soil, where the magnetic permeability of each layer is
equal to the permeability of the vacuum µ0 [6]. This system of equations, containing 2 · n− 2 number
of equations, can be written in the matrix form:

[
D̄v
]
·



X̄Avv
1

Θ̄Avv
2

X̄Avv
2
...

Θ̄Avv
n−1

X̄Avv
n−1

Θ̄Avv
n


=



f̄v
1

ḡv1
f̄v
2
...

ḡvn−2

f̄v
n−1

ḡvn−1


(29)
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where

f̄v
i =


p̄s−1 · e−ᾱs·(d−zs−1) for i = s− 1

−e−ᾱs·(zs−d) for i = s
0 otherwise

(30)

ḡvi =


−q̄s−1 · e−ᾱs·(d−zs−1) for i = s− 1

−e−ᾱs·(zs−d) for i = s
0 otherwise

(31)

The kernel functions Θ̄Avv
i and X̄Avv

i can be easily computed using well-known numerical algorithms for
the computation of a system of linear equations (29). Another procedure using the closed-form kernel
functions is described in detail in [6]. In both cases, the VMP of the VICS for each layer of the medium
can be determined.

3.2. SEP Green’s Functions for VICS

The scalar electric potential (SEP) is a function of the leakage current flowing into the medium. The
infinitesimal SEP of the VICS dφ̄v

i in the i-th layer can be defined as:

dφ̄v
i = Ḡφv

i · τ̄ · ℓ20z · dℓ = Ḡφv
i · τ̄z · dℓ (32)

where τ̄z is the leakage current density along the z-axis. The SEP spatial-domain Green’s function ˜̄Gφv
i

can be written as:

Ḡφv
i =

1

4 · π · κ̄i
· S̄0

(
˜̄Gφv
i

)
(33)

where S̄0(
˜̄Gφv
i ) represents the SI of SEP spectral-domain Green’s function for the i-th layer given in

Appendix A. The SEP spectral-domain Green’s function, similar to VMP, can be written in a form
using kernel functions [6]:

˜̄Gφv
i = ˜̄Gφv

i

(
λ̄, z, d

)
= δi,s · e−ᾱs·|z−d| + Θ̄φv

i · e−ᾱi·(z−zi−1) + X̄φv
i · e−ᾱi·(zi−z) (34)

The connection between the VMP and SEP spectral-domain Green’s functions is given in the following
equation [10]:

∂ ˜̄Gφv
i

∂z′
=

∂ ˜̄Gφv
i

∂d
= −∂ ˜̄GAvv

i

∂z
(35)

from which the SEP kernel functions can be defined as [7]:

Θ̄φv
i =

ᾱi

ᾱs
· Θ̄a

i ; Θ̄a
i =

1

ᾱs
· ∂Θ̄

Avv
i

∂d
(36)

X̄φv
i = − ᾱi

ᾱs
· X̄a

i ; X̄a
i =

1

ᾱs
· ∂X̄

Avv
i

∂d
(37)

It can be seen from (36) and (37) that SEP Green’s functions can be computed from VMP Green’s
functions. However, the auxiliary functions Θ̄a

i and X̄a
i are also the solutions of another system of linear

equations:

[
D̄v
]
·



X̄a
1

Θ̄a
2

X̄a
2
...

Θ̄a
n−1

X̄a
n−1

Θ̄a
n


=



f̄φv
1

ḡφv1

f̄φv
2
...

ḡφvn−2

f̄φv
n−1

ḡφvn−1


(38)
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where the linear equation system matrix [D̄v] is the same as in (29), whereas:

f̄φv
i =


−p̄s−1 · e−ᾱs·(d−zs−1) for i = s− 1

−e−ᾱs·(zs−d) for i = s
0 otherwise

(39)

ḡφvi =


q̄s−1 · e−ᾱs·(d−zs−1) for i = s− 1

−e−ᾱs·(zs−d) for i = s
0 otherwise

(40)

The right-hand side in (38) can also be computed from (30) and (31) as:

f̄φv
i =

1

ᾱs
· ∂f̄

v
i

∂d
; ḡφvi =

1

ᾱs
· ∂ḡ

v
i

∂d
(41)

Therefore, the kernel functions Θ̄φv
i and X̄φv

i can be easily computed using the well-known numerical
algorithms for the computation of a system of linear equations (38), and after that, Equations (36)
and (37). Another procedure with the SEP closed-form kernel functions is based on Equations (36)
and (37), where SEP closed-form kernel functions can be easily obtained from VMP closed-form kernel
functions [6, 7]. In both cases, the SEP of the VICS for each layer of the medium can be determined.

4. HORIZONTAL INFINITESIMAL CURRENT SOURCE (HICS)

4.1. VMP Green’s Functions for HICS

The HICS lies in the z = z′ = d plane of the coordinate system, which means that it can have x- and

y-components. Therefore, the longitudinal current of the HICS generates the infinitesimal VMP A⃗
h

i in
the i-th layer which can be written as:

dĀhx
i

dĀhy
i

dĀhz
i

 =
[
ḠAh

i

]
·


ℓ0x
ℓ0y
0

 · Īℓ · dℓ (42)

where the matrix of the VMP spatial-domain Green’s functions is:

[
ḠAh

i

]
=

 ḠAxx
i 0 0

0 ḠAyy
i 0

ḠAzx
i ḠAzy

i 0

 (43)

From (43) it can be seen that both x- and y-components require an additional component with which
the boundary conditions can be satisfied. In the literature, the usual and easiest way is to take z-
component as an additional component, although it can be chosen differently [12]. The VMP spatial-
domain Green’s functions in (43) can be obtained from the Helmholtz differential equations related to
the x- and y-components of the longitudinal current:

∆ḠAxx
i − γ̄2i · ḠAxx

i = −µi · δ
(
R⃗− R⃗′

)
(44)

∆ḠAzx
i − γ̄2i · ḠAzx

i = 0 (45)

∆ḠAyy
i − γ̄2i · Ḡ

Ayy
i = −µi · δ

(
R⃗− R⃗′

)
(46)

∆ḠAzy
i − γ̄2i · Ḡ

Azy
i = 0 (47)

The solutions of the system of equations are the VMP spatial-domain Green’s functions written in the
following form:

ḠAxx
i = ḠAyy

i =
µi

4 · π
· S̄0

(
˜̄GAhh
i

)
(48)

ḠAzx
i = cosϕ · ḠAzh

i ; ḠAzy
i = sinϕ · ḠAzh

i (49)
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ḠAzh
i =

µi

4 · π
· S̄1

(
˜̄GAvh
i

)
(50)

cosϕ =
x− x′

r
; sinϕ =

y − y′

r
(51)

where r is the distance between the source point and field point, whereas S̄0(
˜̄GAhh
i ) and S̄1(

˜̄GAvh
i ) are

SIs defined in Appendix A. From (48)–(51) it can be seen that y-component expressions can be easily
described by the x-component expressions. Therefore, the final expressions for both components can be
obtained based on the satisfaction of the boundary conditions only for the x-component.

The infinitesimal VMP of HICS from (42) can now be written as:


dĀhx

i

dĀhy
i

dĀhz
i

 =


ℓ0x · S̄0

(
˜̄GAhh
i

)
ℓ0y · S̄0

(
˜̄GAhh
i

)
fzh · S̄1

(
˜̄GAvh
i

)
 · µi · Īℓ · dℓ

4 · π
(52)

where:
fhz = ℓ0x · cosϕ+ ℓ0y · sinϕ (53)

whereas the VMP spectral-domain Green’s functions can be described by the following equations:

˜̄GAhh
i = δi,s · e−ᾱs·|z−d| + Θ̄Ahh

i · e−ᾱi·(z−zi−1) + X̄Ahh
i · e−ᾱi·(zi−z) (54)

˜̄GAvh
i = Θ̄Avh

i · e−ᾱi·(z−zi−1) + X̄Avh
i · e−ᾱi·(zi−z) (55)

Obtaining the unknown VMP kernel functions Θ̄Ahh
i , X̄Ahh

i , Θ̄Avh
i , and X̄Avh

i for HICS can start with
the boundary conditions of VMP spatial-domain Green’s functions:

ḠAxx
i

∣∣
z=zi

= ḠAxx
i+1

∣∣
z=zi

; i = 1, 2, . . . , n− 1 (56)

∂ḠAxx
i

∂z

∣∣∣∣
z=zi

= mi ·
∂ḠAxx

i+1

∂z

∣∣∣∣∣
z=zi

; i = 1, 2, . . . , n− 1 (57)

ḠAxx
i

∣∣
z=zi

= mi · ḠAxx
i+1

∣∣
z=zi

; i = 1, 2, . . . , n− 1 (58)(
∂ḠAxx

i

∂x
+

∂ḠAzx
i

∂z

)∣∣∣∣
z=zi

= mi · q̄i ·

(
∂ḠAxx

i+1

∂x
+

∂ḠAzx
i+1

∂z

)∣∣∣∣∣
z=zi

(59)

where i = 1, 2, . . . , n − 1. The boundary conditions of VMP spectral-domain Green’s functions can be
obtained from (56)–(59):

˜̄GAhh
i

∣∣∣
z=zi

=
p̄i
mi

· ˜̄GAhh
i+1

∣∣∣∣
z=zi

(60)

∂ ˜̄GAhh
i

∂z

∣∣∣∣∣
z=zi

= p̄i ·
∂ ˜̄GAhh

i+1

∂z

∣∣∣∣∣
z=zi

(61)

˜̄GAvh
i

∣∣∣
z=zi

= p̄i · ˜̄GAvh
i+1

∣∣∣
z=zi

(62)

∂ ˜̄GAvh
i

∂z

∣∣∣∣∣
z=zi

− p̄i · q̄i ·
∂ ˜̄GAvh

i+1

∂z

∣∣∣∣∣
z=zi

= (q̄i ·mi − 1) · ˜̄GAhh
i

∣∣∣
z=zi

(63)

where i = 1, 2, . . . , n− 1.
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Equations (60)–(63) yield a system of 4 · n − 4 linear equations, where the unknowns are VMP
kernel functions:

ν̄i · Θ̄Ahh
i + X̄Ahh

i − p̄i
mi

· Θ̄Ahh
i+1 − p̄i

mi
· ν̄i+1 · X̄Ahh

i+1 = f̄h
i (64)

ν̄i · Θ̄Ahh
i − X̄Ahh

i − Θ̄Ahh
i+1 + ν̄i+1 · X̄Ahh

i+1 = ḡhi (65)

ν̄i · Θ̄Avh
i + X̄Avh

i − p̄i · Θ̄Avh
i+1 − p̄i · ν̄i+1 · X̄Avh

i+1 = 0 (66)

ν̄i · Θ̄Avh
i − X̄Avh

i − q̄i · Θ̄Avh
i+1 + q̄i · ν̄i+1 · X̄Avh

i+1 +
q̄i ·mi − 1

ᾱi
·
(
ν̄i · Θ̄Ahh

i + X̄Ahh
i

)
=

−δi,s ·
q̄s ·ms − 1

ᾱs
· e−ᾱs·(zs−d) (67)

whereas:

Θ̄Ahh
1 = X̄Ahh

n = Θ̄Avh
1 = X̄Avh

n = 0 (68)

f̄h
i =


(p̄s−1/ms−1) · e−ᾱs·(d−zs−1) for i = s− 1

−e−ᾱs·(zs−d) for i = s
0 otherwise

(69)

ḡhi =

 −e−ᾱs·(d−zs−1) for i = s− 1
−e−ᾱs·(zs−d) for i = s
0 otherwise

(70)

The system of linear equations (64)–(67) can be computed using well-known numerical computation
methods, and as a result, the unknown kernel functions are obtained in all layers of the medium. This
system of equations can also be divided into two subsystems of equations where some similarities to the
VICS equations occur. Equations (64) and (65) are related only to the x-component and can be solved
independently from (66) and (67). This subsystem of equations can be written in the matrix form:

[
D̄h
]
·



X̄Ahh
1

Θ̄Ahh
2

X̄Ahh
2
...

Θ̄Ahh
n−1

X̄Ahh
n−1

Θ̄Ahh
n


=



f̄h
1

ḡh1

f̄h
2
...

ḡhn−2

f̄h
n−1

ḡhn−1


(71)

and it has a similar form as (29) for VICS. The solution of this subsystem of equations can also be
obtained in two ways: using numerical computation methods or following the procedure with the closed-
form expressions of kernel functions Θ̄Ahh

i and X̄Ahh
i given in detail in [6], with certain generalizations

given in Appendix B. When the kernel functions Θ̄Ahh
i and X̄Ahh

i are known, they can be included in
the second subsystem of linear equations on the right-hand side of the subsystem:

ν̄i · Θ̄Avh
i + X̄Avh

i − p̄i · Θ̄Avh
i+1 − p̄i · ν̄i+1 · X̄Avh

i+1 = 0 (72)

ν̄i · Θ̄Avh
i − X̄Avh

i − q̄i · Θ̄Avh
i+1 + q̄i · ν̄i+1 · X̄Avh

i+1 = −Ψ̄i (73)

where i = 1, 2, . . . , n− 1 and:

Ψ̄i =
q̄i ·mi − 1

ᾱi
·
(
δi,s · e−ᾱs·(zs−d) + ν̄i · Θ̄Ahh

i + X̄Ahh
i

)
(74)

This subsystem of equations, containing 2 · n − 2 number of equations, can also be written in matrix
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form:

[
D̄v
]
·



X̄Avh
1

Θ̄Avh
2

X̄Avh
2
...

Θ̄Avh
n−1

X̄Avh
n−1

Θ̄Avh
n


=



0

−Ψ̄1

0
...

−Ψ̄n−2

0

−Ψ̄n−1


(75)

where the linear equation system matrix [D̄v] is the same as that for VICS in (29) and (38). When the
remaining kernel functions Θ̄Avh

i and X̄Avh
i are obtained, the VMP of the HICS can be obtained.

Therefore, the kernel functions Θ̄Ahh
i , X̄Ahh

i , Θ̄Avh
i , and X̄Avh

i can be easily computed using well-
known numerical algorithms for the computation of systems of linear equations (71) and (75). Another
procedure with the closed-form kernel functions, which is given in detail in [6], was developed for
multilayer soil (special case), and the generalization of these closed-form kernel functions is given in
Appendix B. In both cases, the VMP of the HICS for each layer of a general planar multilayer medium
can be determined.

4.2. SEP Green’s Functions for HICS

The infinitesimal SEP is a function of the leakage current, and in the i-th layer, it can be defined as:

dφ̄h
i = dφ̄x

i + dφ̄y
i = Ḡφh

i · τ̄ · ℓ20h · dℓ = Ḡφh
i · τ̄h · dℓ (76)

where dφ̄h
i is the infinitesimal SEP of the HICS, whereas dφ̄x

i and dφ̄y
i are the x- and y-components,

respectively.
Using the Lorenz gauge condition [11], the SEP spatial-domain Green’s function for HICS can be

written as:

Ḡφh
i = Ḡφx

i = Ḡφy
i =

1

4 · π · κ̄i
· S̄0

(
˜̄Gφh
i

)
(77)

where S̄0(
˜̄Gφh
i ) represents the SI given in Appendix A, whereas the SEP spectral-domain Green’s

function can be described by the following equations [6]:

˜̄Gφh
i = ˜̄Gφh

i

(
λ̄, z, d

)
= δi,s · e−ᾱs·|z−d| + Θ̄φh

i · e−ᾱi·(z−zi−1) + X̄φh
i · e−ᾱi·(zi−z) (78)

The SEP spectral-domain Green’s function can be obtained using the VMP spectral-domain Green’s
functions [6, 10]:

˜̄Gφh
i = ˜̄GAhh

i +
∂ ˜̄GAvh

i

∂z
(79)

From (54), (55), (78), and (79), the SEP kernel functions for HICS can be obtained using the following
equations [6]:

Θ̄φh
i = Θ̄Ahh

i − ᾱi · Θ̄Avh
i ; i = 2, 3, . . . , n (80)

X̄φh
i = X̄Ahh

i + ᾱi · X̄Avh
i ; i = 1, 2, . . . , n− 1 (81)

Θ̄φh
1 = X̄φh

n = 0 (82)

The SEP of the HICS can now be determined using the VMP of the HICS.

5. THE ELECTRIC FIELD INTENSITY OF THE INFINITESIMAL CURRENT
SOURCE (ICS)

Once the VMP and SEP are computed, the electric field intensity can be determined using the following
equation:

E⃗i = −∇φ̄i − j · ω · A⃗i (83)
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where E⃗i is the phasor of the electric field intensity vector in the i-th layer, and ∇ is the del operator,

whereas φ̄i and A⃗i are the SEP and VMP in the i-th layer, respectively. The electric field intensity of
the ICS can be obtained as the sum of the contribution of VICS and HICS to the electric field intensity:

dĒx
i

dĒy
i

dĒz
i

 =


dĒvx

i

dĒvy
i

dĒvz
i

+


dĒhx

i

dĒhy
i

dĒhz
i

 (84)

The vertical component of the electric field intensity, according to (16), (32), (33), and (83), can be
described by the following equation:


dĒvx

i

dĒvy
i

dĒvz
i

 = −



ℓ20z · cosϕ · S̄1

(
˜̄Gφv
i

)
ℓ20z · sinϕ · S̄1

(
˜̄Gφv
i

)
ℓ20z · S̄0

(
∂ ˜̄Gφv

i

∂z

)


· τ̄ · dℓ
4 · π · κ̄i

−


0
0

ℓ0z · S̄0

(
˜̄GAvv
i

)
 · j · ω · µi · Īℓ · dℓ

4 · π
(85)

The horizontal component of the electric field intensity, according to (52), (53), (76), (77), and (83),
can be described by the following equation:


dĒhx

i

dĒhy
i

dĒhz
i

 = −



ℓ20h · cosϕ · S̄1

(
˜̄Gφh
i

)
ℓ20h · sinϕ · S̄1

(
˜̄Gφh
i

)
ℓ20h · S̄0

(
∂ ˜̄Gφh

i

∂z

)


· τ̄ · dℓ
4 · π · κ̄i

−


ℓ0x · S̄0

(
˜̄GAhh
i

)
ℓ0y · S̄0

(
˜̄GAhh
i

)
fhz · S̄1

(
˜̄GAvh
i

)
 · j · ω · µi · Īℓ · dℓ

4 · π
(86)

where the definition of SIs can be found in Appendix A.

6. THE MAGNETIC FIELD INTENSITY OF THE INFINITESIMAL CURRENT
SOURCE (ICS)

The magnetic field intensity of the ICS can be obtained from the VMP using the following equation:
H̄x

i

H̄y
i

H̄z
i

 =
1

µi
·

∣∣∣∣∣∣∣∣∣
i⃗ j⃗ k⃗

∂

∂x

∂

∂y

∂

∂z

Āx
i Āy

i Āz
i

∣∣∣∣∣∣∣∣∣ (87)

Similar to the electric field intensity, the magnetic field intensity can be obtained as the sum of the
contribution of VICS and HICS to the magnetic field intensity:

dH̄x
i

dH̄y
i

dH̄z
i

 =


dH̄vx

i

dH̄vy
i

dH̄vz
i

+


dH̄hx

i

dH̄hy
i

dH̄hz
i

 (88)

According to (16) and (87), the vertical component of the magnetic field intensity can be described by
the following equation: 

dH̄vx
i

dH̄vy
i

dH̄vz
i

 =


ℓ0z · sinϕ · S̄1

(
˜̄GAvv
i

)
−ℓ0z · cosϕ · S̄1

(
˜̄GAvv
i

)
0

 · Ī
ℓ · dℓ
4 · π

(89)
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The horizontal component of the magnetic field intensity, according to (52), (53), and (87), can be
described by the following equation:


dH̄hx

i

dH̄hy
i

dH̄hz
i

 =



fhz · sinϕ · S̄2

(
˜̄GAvh
i

)
− ℓ0y · S̄0

(
∂ ˜̄GAhh

i

∂z

)

ℓ0x · S̄0

(
∂ ˜̄GAhh

i

∂z

)
− fhz · cosϕ · S̄2

(
˜̄GAvh
i

)
(ℓ0y · cosϕ− ℓ0x · sinϕ) · S̄1

(
˜̄GAhh
i

)


· Ī

ℓ · dℓ
4 · π

(90)

where the definition of SIs can be found in Appendix A.

7. THE ADJUSTMENT OF LORENZ POTENTIALS

The Lorenz potentials are fundamental parts of the MPIE formulation and can be modified according
to the requirements because they are auxiliary functions. An important aspect must be respected: the
fields must remain unchanged during the modification of the Lorenz potentials. The SEP is essential in
grounding grid analysis; therefore, it has to be computed [5]. The SEP of ICS can be obtained as the
sum of the SEP of VICS and HICS. The problem is that the two mentioned SEPs cannot be summed
up in their current forms due to their incompatibility [13, 14], and thus they have to be adjusted. The
SEP of HICS is continuous between the layers of the medium, while the SEP of the VICS is not [2].
Therefore, it is reasonable to choose that the SEP of the HICS is the SEP of the ICS:

dφ̄h
i = Ḡφh

i · τ̄ · ℓ20h · dℓ = Ḡφh
i · τ̄h · dℓ (91)

dφ̄v→h
i = Ḡφh

i · τ̄ · ℓ20z · dℓ = Ḡφh
i · τ̄z · dℓ (92)

dφ̄i = dφ̄v→h
i + dφ̄h

i = Ḡφh
i · τ̄ · dℓ (93)

where dφ̄v→h
i is the adjusted infinitesimal SEP of the VICS, dφ̄h

i the infinitesimal SEP of the HICS,

Ḡφh
i the SEP spatial-domain Green’s function for HICS described by (77), and τ̄ the leakage current

density described by (8). The SEP correction for VICS can be written as:

dφ̄vc
i = dφ̄v→h

i − dφ̄v
i = Ḡφvc

i · τ̄ · ℓ20z · dℓ =
(
Ḡφh

i − Ḡφv
i

)
· τ̄ · ℓ20z · dℓ (94)

where SEP spatial-domain Green’s function for VICS correction is:

Ḡφvc
i =

1

4 · π · κ̄i
· S̄0

(
˜̄Gφvc
i

)
(95)

The SI in (95) is defined in Appendix A, and it contains the SEP spectral-domain Green’s function:

˜̄Gφvc
i = ˜̄Gφh

i − ˜̄Gφv
i = ˜̄GAhh

i +
∂ ˜̄GAvh

i

∂z
− ˜̄Gφv

i (96)

which can be defined by kernel functions:

˜̄Gφvc
i = Θ̄φvc

i · e−ᾱi·(z−zi−1) + X̄φvc
i · e−ᾱi·(zi−z) (97)

Θ̄φvc
i = Θ̄φh

i − Θ̄φv
i = Θ̄Ahh

i − ᾱi · Θ̄Avh
i − Θ̄φv

i (98)

X̄φvc
i = X̄φh

i − X̄φv
i = X̄Ahh

i + ᾱi · X̄Avh
i − X̄φv

i (99)

The correction of the SEP demands the correction of the VMP for VICS since they are coupled by the
Lorenz gauge condition. Therefore, the infinitesimal VMP of the ICS can be obtained as the sum of
the horizontal contribution, vertical contribution, and correction:

dĀx
i

dĀy
i

dĀz
i

 =


dĀhx

i

dĀhy
i

dĀhz
i

+


0
0

dĀvz
i

+


dĀvcx

i

dĀvcy
i

dĀvcz
i

 (100)
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where the corrected infinitesimal VMP of the VICS is:


dĀvcx

i

dĀvcy
i

dĀvcz
i

 = − 1

j · ω
·



∂Ḡφvc
i

∂x

∂Ḡφvc
i

∂y

∂Ḡφvc
i

∂z


· τ̄ · ℓ20z · dℓ (101)

The correction can also be described using SIs:


dĀvcx

i

dĀvcy
i

dĀvcz
i

 = −



cosϕ · S̄1

(
˜̄Gφvc
i

)
sinϕ · S̄1

(
˜̄Gφvc
i

)
S̄0

(
∂ ˜̄Gφvc

i

∂z

)


· µi · τ̄ · ℓ20z · dℓ
4 · π · γ̄2i

(102)

hence the infinitesimal VMP of the ICS can be described by:


dĀx

i

dĀy
i

dĀz
i

 =


ℓ0x · S̄0

(
˜̄GAhh
i

)
ℓ0y · S̄0
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· µi · τ̄ · ℓ20z · dℓ
4 · π · γ̄2i

(103)

where all SIs are defined in Appendix A.

8. THE SPECIAL CASES: THE MULTILAYER SOIL AND THE MULTILAYER
LOSSLESS DIELECTRIC

This paper presents a theory for the computation of electromagnetic phenomena in the case of a general
planar multilayer medium. Usually, the literature deals with specific multilayer media, such as the
multilayer soil with air in the case of grounding grid analysis, or the multilayer lossless dielectric that
can be considered in the printed circuit technology. Both cases have their characteristics, and the
equations proposed in the previous sections can be modified for both special cases.

8.1. The Multilayer Soil and the Air

In the case of planar multilayer soil and the air, the magnetic permeability of each layer is equal to the
permeability of the vacuum:

µi = µ0; mi = 1 (104)

This modification simplified the equations in the previous sections, although it did not affect the kernel
functions of the spectral-domain Green’s functions. This case is described in detail in [6, 7].

8.2. The Multilayer Lossless Dielectric

The stratified multilayer lossless dielectric is a medium in which the electric conductivity of each layer
is equal to zero:

σi = 0 (105)

In this case, ICS becomes a Hertzian electric dipole; VICS becomes a vertical electric dipole (VED); and
HICS becomes a horizontal electric dipole (HED). The kernel functions of the spectral-domain Green’s
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functions for VED and HED can be computed from the kernels for VICS and HICS using the following
substitutions:

κ̄i → j · ω · εi (106)

γ̄i → j · ki; ki = ω · √µi · εi (107)

τ̄ → j · ω · τ̄ q (108)

where ki is the wave number of the i-th layer, and τ̄ q is the linear charge density on the axis of the
Hertzian electric dipole.

9. CONCLUSION

This paper depicts the electromagnetic disturbances created by the ICS in its surroundings. The ICS
is located in a planar multilayer medium, and it generates the electric field intensity and magnetic
field intensity in all layers of the medium. The Lorenz potentials were introduced using the MPIE
formulation. The paper describes in detail the definition and computation of Green’s functions for
Lorenz potentials and fields, as well as the procedure for the adjustment of Lorenz potentials for VICS
and HICS. In other words, a detailed procedure for obtaining the Lorenz potentials and fields generated
by the ICS in a planar isotropic multilayer medium is given. The paper also considers two special cases
of the general multilayer medium usually considered in the literature: the multilayer soil with air and
multilayer lossless dielectric. The proposed expressions for Green’s functions were modified to meet the
requirements and characteristics of each medium.

A novel approach proposed in this paper is different from the other approaches dealing with this
topic. The other methods deliver solutions only in the s-th layer where the current source is located,
and the solutions in other layers need to be computed iteratively using recursive expressions, going
between layers until the field-point layer is reached. Green’s functions are obtained by the double
Fourier transformation and generalized reflection coefficients, or by a transmission line analogy. Green’s
functions obtained by the above-mentioned algorithms in the source layer, for chosen parameters, yield
the same numerical results as Green’s functions obtained by the algorithm proposed in this paper.
Therefore, the numerical validation of the proposed algorithm is verified. On the other hand, it is very
difficult to reduce one form of Green’s functions to another, and therefore analytically validate the
proposed approach, except in the case of a two-layer medium. This validation, in the case of planar
multilayer soil, is given in detail in [6].

The proposed approach introduces kernels of the spectral-domain Green’s function, used for the
forming of systems of linear equations obtained from the boundary conditions. This novelty approach,
where the source and field layers are arbitrarily positioned, contains systems of equations that can be
easily solved using well-known numerical computation algorithms. This is not a numerically demanding
task since the number of equations is relatively small because it depends only on the number of medium
layers. This paper also offers an analytical solution to the system of linear equations containing recursive
functions that required considerable effort to obtain. The difference between them is that numerical
computation gives values of the kernels of the spectral domain Green’s functions of the Lorenz potentials
in all layers, while closed-form expressions describe kernels for the observed field layer.

A detailed validation of results for the planar multilayer soil is described in [6, 7]. The proposed
algorithms for a generalized multilayer medium proposed in this paper were validated by a comparison
of the numerical and analytical solutions, which yielded identical results.

In addition to [6], this paper also gives matrix expressions for infinitesimal electric and magnetic
field intensity, obtained from Lorenz potentials. The novelty of this paper is forming of the system
of linear equations for the numerical computation of the SEP of VICS. Therefore, the SEP of VICS
can be easily obtained using well-known numerical matrix-solving methods. The paper also provides
a procedure for the adjustment of Lorenz potentials since the obtained SEP of VICS and HICS are
incompatible. The adjustment is important in the case of the arbitrary-oriented ICS in which the SEPs
of VICS and HICS should be compatible since their contributions have to be summed up.



Progress In Electromagnetics Research B, Vol. 100, 2023 69

APPENDIX A. DEFINITION OF THE SOMMERFELD INTEGRALS

In the case of ICS in a planar multilayered medium, scientists have to deal with the so-called Sommerfeld
integrals (SIs). The SIs are notorious and well known in the electromagnetic community due to their
complicated and time-consuming computation process. They appear in the equations that describe the
spatial-domain Green’s functions for VMP, SEP, electric field intensity, and magnetic field intensity. In
this paper, they appear in three different types due to the order of derivation inside the integral. The
zero-order SI, which appears in (15), (16), (33), (48), (52), (77), (85), (86), and (90), can be described
by:

S̄0

(
˜̄Gi

)
=

∞∫
0

˜̄Gi ·
λ̄

ᾱi
· J̄0

(
λ̄ · r

)
· dλ̄ (A1)

where ˜̄Gi is the spectral-domain Green’s function, αi a parameter defined by (18), λ̄ an integration
variable, J̄0(λ̄ · r) the Bessel function of the first kind of order zero, and r the distance between the
source point and the field point defined by:

r =

√
(x− x′)2 + (y − y′)2 (A2)

In (A1), the order of derivation of the Bessel function is zero. The first-order SI, which appears
in (50), (52), (85), (86), (89), and (90), can be described by:
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)
∂r

· dλ̄ (A3)

where the first-order derivation of the Bessel function can also be expressed as:

∂J̄0
(
λ̄ · r

)
∂r

= λ̄ · J̄1
(
λ̄ · r

)
(A4)

where J̄1(λ̄ · r) is the Bessel function of the first kind of the first order. The second-order SI, which
appears in (90), can be described by:
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where:
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The second-order SI can be defined alternatively:
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· S̄1

(
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SIs do not have an analytical solution, so the solution has to be provided using numerical methods.
As previously mentioned, the computation of the SIs is demanding because they are highly oscillatory
due to the Bessel function in the integrand, slowly convergent with the semi-infinite boundaries of
the integral, and in some cases even divergent. The computation of SIs is usually divided into two
parts: the first part of SIs and the so-called “tails” of SIs. Each part possesses its specifics; therefore,
computational methods and algorithms were developed separately for each part. Numerous studies have
dealt with this topic, in which efficient algorithms for the computation of SIs can be found [15–19].
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APPENDIX B. GENERALIZATION OF THE VMP CLOSED-FORM
SPECTRALDOMAIN GREEN’S FUNCTIONS

This paper offers systems of linear equations, obtained from the boundary conditions, from which the
VMP kernel functions of the spectral-domain Green’s functions for VICS and HICS can be obtained.
One can choose numerical computation or closed-form expressions that avoid forming and solving the
system of linear equations. In [6, 7], closed-form spectral-domain Green’s functions were introduced for
the multilayered soil and air, where the magnetic permeabilities of all layers are µi = µ0. This paper
considers the arbitrary permeability of the layers, so the closed-form expressions need to be generalized.

The VICS expressions do not need to be generalized because the permeability of the layers
disappears from the kernel functions equations. Therefore, the VMP closed-form spectral-domain
Green’s functions for VICS in [6] are valid for any planar multilayer medium.

The generalization of HICS expressions involves several HICS equations in [6], which are listed
sequentially. To distinguish the equations between the current paper and [6], the authors used curly
brackets {} for the equations from [6].

• Instead of the equations {1} and {3} in [6], expressions (1) and (2) from Section 2 are valid, in
which the permeability becomes µ0 = µi.

• A new parameter mi needs to be introduced (Equation (21)).

• Instead of {44} in [6], expression (74) in Section 4 is valid.

The additional modifications of the equations in [6] should be done as follows:

• In {49}:
ᾱs−1/ᾱs → (µs/µs−1) · (ᾱs−1/ᾱs) (B1)

• In {50}:
ᾱi/ᾱs → (µs/µi) · (ᾱi/ᾱs) (B2)

• Equation {52} becomes:

T̄ h
i =

2 · ᾱi+1 · µi

ᾱi+1 · µi + ᾱi · µi+1
= T̄ TE

i+1, i (B3)

• Equation {B4} becomes:

R̄h
i =

ᾱi+1 · µi − ᾱi · µi+1

ᾱi+1 · µi + ᾱi · µi+1
= R̄TE

i+1,i = −R̄TE
i,i+1 (B4)

• In {C5}:
(q̄s − 1) → (q̄s ·ms − 1) (B5)

• In {C6}:
(q̄i − 1) → (q̄i ·mi − 1) (B6)

• In {C7}:
q̄s−1 − 1

ᾱs
→ µs

µs−1
· q̄s−1 ·ms−1 − 1

ᾱs
(B7)

• In {C8}:
q̄i − 1

ᾱs
→ µs

µi
· q̄i ·mi − 1

ᾱs
(B8)
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