Vol. 177
Latest Volume
All Volumes
PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2023-05-25
Broad-Tuning, Dichroic Metagrating Fabry-Perot Filter Based on Liquid Crystal for Spectral Imaging
By
Progress In Electromagnetics Research, Vol. 177, 43-51, 2023
Abstract
Dynamic structural color can empower devices with additional functions like spectrum and polarization detection beyond display or imaging. However, present methods suffer from narrow tuning ranges, low throughput, or bulky volumes. In this work, a tunable filter composed of a dichroic metagrating Fabry-Perot cavity and liquid crystal (LC) material is proposed and investigated. By modulating the polarization of the incident light with the LC, the color response can change from blue to green and deep red due to the `mode jumping' effect, with a tuning range of around 300 nm. Besides, we experimentally demonstrate the use of this device as a spectral imager in the visible range. Experimental results show that spectral resolvability can be around 10 nm, with the largest peak wavelength in accuracy of ~5 nm. This approach shows superior performance over traditional liquid crystal tunable filters in low light conditions and indicates the potential of dynamic structural color for miniaturized spectroscopic applications.
Supplementary Information
Citation
Tingbiao Guo, Zijian Lin, Xinan Xu, Zhi Zhang, Xiao Chen, Nan He, Guoqing Wang, Yi Jin, Julian Evans, and Sailing He, "Broad-Tuning, Dichroic Metagrating Fabry-Perot Filter Based on Liquid Crystal for Spectral Imaging," Progress In Electromagnetics Research, Vol. 177, 43-51, 2023.
doi:10.2528/PIER23030703
References

1. Yu, Y. F., A. Y. Zhu, R. Paniagua-Dominguez, Y. H. Fu, B. Luk'yanchuk, and A. I. Kuznetsov, "High-transmission dielectric metasurface with 2π phase control at visible wavelengths," Laser & Photonics Reviews, Vol. 9, 412-418, 2015.
doi:10.1002/lpor.201500041

2. Yu, N., F. Aieta, P. Genevet, M. A. Kats, Z. Gaburro, and F. Capasso, "A broadband, background- free quarter-wave plate based on plasmonic metasurfaces," Nano Lett., Vol. 12, 6328-6333, 2012.
doi:10.1021/nl303445u

3. Ding, F., Z. Wang, S. He, V. M. Shalaev, and A. V. Kildishev, "Broadband high-efficiency half-wave plate: A supercell-based plasmonic metasurface approach," ACS Nano, Vol. 9, 4111-4119, 2015.
doi:10.1021/acsnano.5b00218

4. Khorasaninejad, M., W. T. Chen, R. C. Devlin, J. Oh, A. Y. Zhu, and F. Capasso, "Metalenses at visible wavelengths: Diffraction-limited focusing and subwavelength resolution imaging," Science, Vol. 352, 1190-1194, 2016.
doi:10.1126/science.aaf6644

5. Zheng, G., H. Muhlenbernd, M. Kenney, G. Li, T. Zentgraf, and S. Zhang, "Metasurface holograms reaching 80% efficiency," Nature Nanotechnology, Vol. 10, 308-312, 2015.
doi:10.1038/nnano.2015.2

6. Kumar, K., H. Duan, R. S. Hegde, S. C. Koh, J. N. Wei, and J. K. Yang, "Printing colour at the optical diffraction limit," Nature Nanotechnology, Vol. 7, 557-561, 2012.
doi:10.1038/nnano.2012.128

7. Cheng, F., J. Gao, T. S. Luk, and X. Yang, "Structural color printing based on plasmonic metasurfaces of perfect light absorption," Scientific Reports, Vol. 5, 11045, 2015.
doi:10.1038/srep11045

8. Sun, S., Z. Zhou, C. Zhang, et al. "All-dielectric full-color printing with TiO2 metasurfaces," ACS Nano, Vol. 11, 4445-4452, 2017.
doi:10.1021/acsnano.7b00415

9. Liu, N., M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, "Infrared perfect absorber and its application as plasmonic sensor," Nano Lett., Vol. 10, 2342-2348, 2010.
doi:10.1021/nl9041033

10. He, N., X. Xu, T. Guo, et al. "Highly compact all-solid-state beam steering module based on a metafiber," ACS Photonics, Vol. 9, 3094-3101, 2022.
doi:10.1021/acsphotonics.2c00848

11. Zhang, X., K. Kwon, J. Henriksson, J. Luo, and M. C. Wu, "A large-scale microelectromechanical-systems-based silicon photonics LiDAR," Natur., Vol. 603, 253-258, 2022.
doi:10.1038/s41586-022-04415-8

12. Lee, G.-Y., J.-Y. Hong, S.-H. Hwang, et al., "Metasurface eyepiece for augmented reality," Nature Communications, Vol. 9, 4562, 2018.
doi:10.1038/s41467-018-07011-5

13. Abdollahramezani, S., O. Hemmatyar, M. Taghinejad, et al. "Dynamic hybrid metasurfaces," Nano Lett., Vol. 21, 1238-1245, 2021.
doi:10.1021/acs.nanolett.0c03625

14. Arbabi, E., A. Arbabi, S. M. Kamali, Y. Horie, M. Faraji-Dana, and A. Faraon, "MEMS-tunable dielectric metasurface lens," Nature Communications, Vol. 9, 812, 2018.
doi:10.1038/s41467-018-03155-6

15. Meng, C., P. C. V. Thrane, F. Ding, et al. "Dynamic piezoelectric MEMS-based optical metasurfaces," Science Advances, Vol. 7, No. 26, eabg5639, 2021.
doi:10.1126/sciadv.abg5639

16. Huang, Y.-W., H. W. H. Lee, R. Sokhoyan, et al. "Gate-tunable conducting oxide metasurfaces," Nano Lett., Vol. 16, 5319-5325, 2016.
doi:10.1021/acs.nanolett.6b00555

17. Decker, M., C. Kremers, A. Minovich, et al. "Electro-optical switching by liquid-crystal controlled metasurfaces," Opt. Express, Vol. 21, 8879-8885, 2013.
doi:10.1364/OE.21.008879

18. Driencourt, L., F. Federspiel, D. Kazazis, et al. "Electrically tunable multicolored filter using birefringent plasmonic resonators and liquid crystals," ACS Photonics, Vol. 7, 444-453, 2019.

19. Franklin, D., R. Frank, S.-T. Wu, and D. Chanda, "Actively addressed single pixel full-colour plasmonic display," Nature Communications, Vol. 8, 15209, 2017.
doi:10.1038/ncomms15209

20. Zou, C., A. Komar, S. Fasold, et al., "Electrically tunable transparent displays for visible light based on dielectric metasurfaces," ACS Photonics, Vol. 6, 1533-1540, 2019.
doi:10.1021/acsphotonics.9b00301

21. Kim, I., M. A. Ansari, M. Q. Mehmood, et al. "Stimuli-responsive dynamic metaholographic displays with designer liquid crystal modulators," Adv. Mater., Vol. 32, 2004664, 2020.
doi:10.1002/adma.202004664

22. Badloe, T., I. Kim, Y. Kim, J. Kim, and J. Rho, "Electrically tunable bifocal metalens with diffraction-limited focusing and imaging at visible wavelengths," Advanced Science, Vol. 8, 2102646, 2021.
doi:10.1002/advs.202102646

23. Kobashi, J., H. Yoshida, and M. Ozaki, "Planar optics with patterned chiral liquid crystals," Nature Photonics, Vol. 10, 389-392, 2016.
doi:10.1038/nphoton.2016.66

24. Li, S.-Q., X. Xu, R. Maruthiyodan Veetil, V. Valuckas, R. Paniagua-Dominguez, and A. I. Kuznetsov, "Phase-only transmissive spatial light modulator based on tunable dielectric metasurface," Science, Vol. 364, 1087-1090, 2019.
doi:10.1126/science.aaw6747

25. Daqiqeh Rezaei, S., Z. Dong, J. Y. E. Chan, et al. "Nanophotonic structural colors," ACS Photonics, Vol. 8, 18-33, 2020.

26. Li, K., J. Wang, W. Cai, H. He, J. Liu, Z. Yin, D. Luo, Q. Mu, D. Gerard, and Y. J. Liu, "Electrically switchable structural colors based on liquid-crystal-overlaid aluminum anisotropic nanoaperture arrays," Opt. Express, Vol. 30, No. 18, 31913-31924, 2022.
doi:10.1364/OE.461887

27. Lee, Y., M.-K. Park, S. Kim, J. H. Shin, C. Moon, J. Y. Hwang, J.-C. Choi, H. Park, H.-R. Kim, and J. E. Jang, "Electrical broad tuning of plasmonic color filter employing an asymmetric-lattice nanohole array of metasurface controlled by polarization rotator," ACS Photonics, Vol. 4, 1954, 2017.
doi:10.1021/acsphotonics.7b00249

28. Smith, D., D. Vier, T. Koschny, and C. Soukoulis, "Electromagnetic parameter retrieval from inhomogeneous metamaterials," Phys. Rev. E, Vol. 71, No. 3, 036617, 2005.
doi:10.1103/PhysRevE.71.036617

29. August, I., Y. Oiknine, M. AbuLeil, I. Abdulhalim, and A. Stern, "Miniature compressive ultra-spectral imaging system utilizing a single liquid crystal phase retarder," Scientific Reports, Vol. 6, 1-9, 2016.

30. Palik, E. D., Handbook of Optical Constants of Solids, Academic Press, 1998.