Vol. 172
Latest Volume
All Volumes
PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2021-12-24
Non-Hermitian Skin Effect and Delocalized Edge States in Photonic Crystals with Anomalous Parity-Time Symmetry
By
Progress In Electromagnetics Research, Vol. 172, 33-40, 2021
Abstract
Non-Hermitian skin effect denotes the exponential localization of a large number of eigen-states at boundaries in a non-Hermitian lattice under open boundary conditions. Such a non-Hermiticity-induced skin effect can offset the penetration depth of in-gap edge states, leading to counterintuitive delocalized edge modes, which have not been studied in a realistic photonic system such as photonic crystals. Here, we analytically reveal the non-Hermitian skin effect and the delocalized edge states in Maxwell's equations for non-Hermitian chiral photonic crystals with anomalous parity-time symmetry. Remarkably, we rigorously prove that the penetration depth of the edge states is inversely proportional to the frequency and the real part of the chirality. Our findings pave a way towards exploring novel non-Hermitian phenomena and applications in continuous Maxwell's equations.
Citation
Qinghui Yan, Hongsheng Chen, and Yihao Yang, "Non-Hermitian Skin Effect and Delocalized Edge States in Photonic Crystals with Anomalous Parity-Time Symmetry," Progress In Electromagnetics Research, Vol. 172, 33-40, 2021.
doi:10.2528/PIER21111602
References

1. Wang, K., A. Dutt, K. Y. Yang, C. C. Wojcik, J. Vučković, and S. Fan, "Generating arbitrary topological windings of a non-Hermitian band," Science, Vol. 371, 1240-1245, 2021.
doi:10.1126/science.abf6568

2. Xiao, L., T. Deng, K. Wang, G. Zhu, Z. Wang, W. Yi, and P. Xue, "Non-Hermitian bulk-boundary correspondence in quantum dynamics," Nature Physics, Vol. 16, 761-766, 2020.
doi:10.1038/s41567-020-0836-6

3. Helbig, T., T. Hofmann, S. Imhof, M. Abdelghany, T. Kiessling, L. Molenkamp, C. Lee, A. Szameit, M. Greiter, and R. Thomale, "Generalized bulk-boundary correspondence in non-Hermitian topolectrical circuits," Nat. Phys., Vol. 16, 747-750, 2020.
doi:10.1038/s41567-020-0922-9

4. Longhi, S., "Non-Bloch-band collapse and chiral Zener tunneling," Phys. Rev. Lett., Vol. 124, 066602, 2020.
doi:10.1103/PhysRevLett.124.066602

5. Zhou, D. and J. Zhang, "Non-Hermitian topological metamaterials with odd elasticity," Phys. Rev. Research, Vol. 2, 023173, 2020.
doi:10.1103/PhysRevResearch.2.023173

6. Longhi, S., "Topological phase transition in non-Hermitian quasicrystals," Phys. Rev. Lett., Vol. 122, 237601, 2019.
doi:10.1103/PhysRevLett.122.237601

7. Gao, P., M. Willatzen, and J. Christensen, "Anomalous topological edge states in non-Hermitian piezophononic media," Phys. Rev. Lett., Vol. 125, 206402, 2020.
doi:10.1103/PhysRevLett.125.206402

8. Longhi, S., "Non-bloch PT symmetry breaking in non-Hermitian photonic quantum walks," Opt. Lett., Vol. 44, 5804-5807, 2019.
doi:10.1364/OL.44.005804

9. Deng, K. and B. Flebus, "Non-Hermitian skin effect in magnetic systems,", arXiv:2109.01711, 2021.

10. Braghini, D., L. G. G. Villani, M. I. N. Rosa, and J. R. de F Arruda, "Non-Hermitian elastic waveguides with piezoelectric feedback actuation: Non-reciprocal bands and skin modes," J. Phys. D: Appl. Phys., Vol. 54, 285302, 2021.
doi:10.1088/1361-6463/abf9d9

11. Song, Y., W. Liu, L. Zheng, Y. Zhang, B. Wang, and P. Lu, "Two-dimensional non-Hermitian skin effect in a synthetic photonic lattice," Phys. Rev. Applied, Vol. 14, 064076, 2020.
doi:10.1103/PhysRevApplied.14.064076

12. Yao, S. and Z. Wang, "Edge states and topological invariants of non-Hermitian systems," Phys. Rev. Lett., Vol. 121, 086803, 2018.
doi:10.1103/PhysRevLett.121.086803

13. Zhu, W., W. X. Teo, L. Li, and J. Gong, "Delocalization of topological edge states," Phys. Rev. B, Vol. 103, 195414, 2021.
doi:10.1103/PhysRevB.103.195414

14. Okuma, N., K. Kawabata, K. Shiozaki, and M. Sato, "Topological origin of non-Hermitian skin effects," Phys. Rev. Lett., Vol. 124, 086801, 2020.
doi:10.1103/PhysRevLett.124.086801

15. Zhang, K., Z. Yang, and C. Fang, "Correspondence between winding numbers and skin modes in non-Hermitian systems," Phys. Rev. Lett., Vol. 125, 126402, 2020.
doi:10.1103/PhysRevLett.125.126402

16. Xiao, M., Z. Q. Zhang, and C. T. Chan, "Surface impedance and bulk band geometric phases in one-dimensional systems," Phys. Rev. X, Vol. 4, 021017, 2014.

17. Zak, J., "Berry's phase for energy bands in solids," Phys. Rev. Lett., Vol. 62, 2747-2750, 1989.
doi:10.1103/PhysRevLett.62.2747

18. Yi, Y. and Z. Yang, "Non-Hermitian skin modes induced by on-site dissipations and chiral tunneling effect," Phys. Rev. Lett., Vol. 125, 186802, 2020.
doi:10.1103/PhysRevLett.125.186802

19. Okugawa, R., R. Takahashi, and K. Yokomizo, "Non-Hermitian band topology with generalized inversion symmetry," Phys. Rev. B, Vol. 103, 205205, 2021.
doi:10.1103/PhysRevB.103.205205

20. Buddhiraju, S., A. Song, G. T. Papadakis, and S. Fan, "Nonreciprocal metamaterial obeying time-reversal symmetry," Phys. Rev. Lett., Vol. 124, 257403, 2020.
doi:10.1103/PhysRevLett.124.257403