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Non-Hermitian Skin Effect and Delocalized Edge States in Photonic
Crystals with Anomalous Parity-Time Symmetry

Qinghui Yan1, 2, Hongsheng Chen1, 2, *, and Yihao Yang1, 2, *

Abstract—Non-Hermitian skin effect denotes the exponential localization of a large number of eigen-
states at boundaries in a non-Hermitian lattice under open boundary conditions. Such a non-
Hermiticity-induced skin effect can offset the penetration depth of in-gap edge states, leading to
counterintuitive delocalized edge modes, which have not been studied in a realistic photonic system
such as photonic crystals. Here, we analytically reveal the non-Hermitian skin effect and the delocalized
edge states in Maxwell’s equations for non-Hermitian chiral photonic crystals with anomalous parity-
time symmetry. Remarkably, we rigorously prove that the penetration depth of the edge states is
inversely proportional to the frequency and the real part of the chirality. Our findings pave a way
towards exploring novel non-Hermitian phenomena and applications in continuous Maxwell’s equations.

1. INTRODUCTION

Non-Hermitian skin effect (NHSE), the exponential localization of an extensive number of eigen-states
at the open boundaries of the system, has gained rapidly growing attention in non-Hermitian physics.
Initially proposed in condensed-matter systems under tight-binding approximation, NHSE has been
theoretically constructed and experimentally realized across multiple disciplines [1–11]. So far, most
studies have been focused on the NHSE in one-dimensional (1D) systems, where the conventional bulk-
edge correspondence principle is violated. To recover the bulk-edge correspondence, the generalized
Brillouin zone (GBZ) has been proposed, in which a nonzero imaginary part is assigned to the Bloch
wavevector k [12]. The relation between Re(k) and Im(k) is thus the GBZ, with Re(·) and Im(·) denoting
the real and imaginary parts of the inputs, respectively. Moreover, GBZ provides an intuitive picture
to understand the penetration depths of the localized states.

NHSE has challenged our conventional understanding of bulk/edge states, as bulk states can be
localized at the edge, whereas the edge states can be fully delocalized into states that are extended
in the bulk [13]. However, they can still be distinguished by the number of eigen-states; for a lattice
sized N , the number of bulk states is O(N), while the number of edge states is O(1) [14, 15]. In the
context of photonics, the delocalized edge states (DESs) have potentials in applications. For example,
due to the frequency isolation and energy delocalization, DESs manifest themselves as ideal resonant
modes for single-mode lasing. While most previous studies on NHSE and DESs have been restricted to
tight-binding models, realistic photonic systems such as photonic crystals usually cannot be modeled
discretely. It thus requires a continuum approach based on the Maxwell’s equations, which have not
been studied yet.
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Here, we analytically study the NHSE and DESs in 1D non-Hermitian chiral PhCs based on the
first-principle calculation by Maxwell’s equations. We start with a Hermitian PhC and derive the eigen-
spectra under periodic boundary condition (PBC) and open boundary condition (OBC), respectively.
By adopting the transfer matrix method (TMM), we find that by varying the non-Hermitian chirality of
one type of layers, we precisely control the penetration depth of NHSE, resulting in DESs. Finally, we
prove the non-Hermitian chiral material satisfies anomalous parity-time symmetry and discuss how the
real and imaginary parts of the chirality affect the dispersion relations and mode profiles, respectively.

2. HERMITIAN PHOTONIC CRYSTALS

We start with a piece of Hermitian 1D PhCs with a unit-cell consisting of two layers, namely layer A
and layer B. The thicknesses of the two layers are dA = 2dB = 2

3d, where d is the lattice constant
normalized to 1. The constitutive parameters are ϵB = 4 and ϵA = µA = µB = 1, respectively. For
simplicity, we suppose ϵ0 = µ0 = c = 1 and only consider the TE polarization with a magnetic field out
of plane, as shown in Fig. 1(c). Analytically, we obtain the dispersion relation of the PhCs [16],

cos[kd] =
η + 1

2
cos[ω(nAdA + nBdB)] +

−η + 1

2
cos[ω(nAdA − nBdB)] (1)

The band structure of the PhC under PBC is shown in Fig. 1(a). Here, η = (ZA/ZB + ZB/ZA)/2, and
ZA,B and nA,B are the impedances and refractive indices of layer A and B, respectively. For isotropic

materials, Z =
√

µ/ϵ and n =
√
ϵµ, so nB = 2, ZB = 1/2 and nA = ZA = 1, and thus η = 5/4.

Note that nAdA − nBdB = 0, which simplifies Eq. (1) to make all bands periodically arranged in the
frequency domain, with a normalized periodicity ω0/(c/d) = 3π/2. Each period contains two bands and
a bandgap in between, as shown in Fig. 1(a).

Next, we study the OBC eigen-spectra. Consider a Fabry-Pérot (FP) cavity filled with such PhCs.
The cavity is bounded by perfect metals that shield the electric field, analogous to the OBC in lattice
models. As shown in Fig. 1(b), the OBC spectra are almost the same as PBC counterparts, except
several frequency isolated states in the middle of the bandgap, known as in-gap edge states. In our
example, the finite-size PhC starts with layer A and ends with layer B, so there is only one edge state
localized at the right boundary. Because of the OBC, every eigen-state is a standing wave that interferes
destructively at the boundaries, mostly by two bulk states under PBC with opposite wavevectors, shown
as the solid red dots and in-band red line in Fig. 1(a), and the mode profile in Fig. 1(d). Besides most
bulk states, an OBC state can be destructively interfered by itself, such as the edge state located in the
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Figure 1. Hermitian PhCs. (a) Dispersion relation of PhCs under PBC. By judiciously designing
the unit-cell, all bands are periodically arranged in the frequency domain, containing one bandgap in
each period. The inset shows the unit-cell. (b) OBC spectra in an FP cavity. In the middle of each
bandgap, there is an edge state localized at the right boundary. (c) Schematic of the PhCs under OBC.
(d) Mode profile of a bulk state, shown as in-band red line in (a). (e) Mode profile of the in-gap edge
state localized at the right boundary.
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bandgap, having no correspondence to the PBC states. Substituting ω = ω0/2 into Eq. (1), we have
k = π + ig0, where g0 = −a cosh η. Here, g0 < 0 implies the rightward localization of edge state. The
penetration depth is δ0 = 1/|g0| ≈ 1.44 periods.

3. GENERALIZED BRILLOUIN ZONE CALCULATED FROM TRANSFER MATRIX
METHOD

For future analysis, we briefly recall TMM to describe our model. The electromagnetic field in each
layer consists of two planewaves propagating forward and backward, described by the TE component
of the Maxwell’s equations

k

[
0 1
1 0

] [
Ex

Hy

]
= ω

[
ϵxx ξxy
ζyx µyy

] [
Ex

Hy

]
. (2)

Rewrite it as nσ1Ψ = MΨ for brief notations, where n = k/ω is the definition of refractive index, and
σ1 is the first Pauli matrix. By solving this generalized eigen-value problem, we have two eigen-values
n± and two eigen-vectors Ψ±, respectively, where the plus-minus sign denotes the forward/backward
propagation direction. Arranging Ψ+ and Ψ− in columns, we have

Ψ̃ = [Ψ+ Ψ−] =

[
Z+ Z−
1 −1

]
. (3)

In this work, we suppose Z+ = Z− and suppress the plus/minus subscript of impedances. From the

definition of Ψ̃ we have σ1Ψ̃ñ = MΨ̃, where ñ =
[ n+

−n−

]
), which finally leads to

M = σ1Ψ̃ñΨ̃−1. (4)

In doing so, we can calculate the refractive index and impedance from the constitutive parameters, and
vice versa. Take layer A as an example, and the electromagnetic field in inside the layer is expressed by[

Ex

Hy

]
=

[
ZA ZA

1 −1

] [
m+

m−

]
⇒ Ψ = Ψ̃AΦ, (5)

where m+ and m− are the coefficients of planewaves. Given the thickness dA of the layer, we have

ΦdA =

[
e+iωnA+dA

e−iωnA−dA

]
Φ0 ⇒ ΦdA = TAΦ0, (6)

where the subscript denotes the position of the wavefunction. nA± denotes the refractive index for the
forward/backward component, which is not the same in chiral materials. Given that the electromagnetic
field is continuous along the interface between every two neighboring layers, we have

(Ψ̃BTBΨ̃
−1
B )(Ψ̃ATAΨ̃

−1
A )Ψ0 = Ψd = βΨ0 (7)

for the unit-cell under Floquet boundary condition, where β = eikd is the generalized phase shift per
unit-cell. Here, the generalized means k can have nonzero imaginary part to amplify/attenuate the
amplitude of the wave. By solving this eigen-value problem, we find two eigen-values, namely β+ and
β−, both leading to Eq. (1), the characteristic equation of the PhCs.

Then, we consider the formulae of PBC and OBC, which lead to similar spectra in Hermitian
systems but have different physical meanings in essence. The former supposes that all the unit-cells are
connected from head to tail to preserve the energy flux along the propagation direction, enforcing k to
be a real number and thus |β| = 1; the latter supposes that the PhCs are bounded by two mirrors at
which the wavefunctions are destructively interfered, which in most cases involves two Bloch states to
form a standing wave. Note that the wavevectors of the two states are not required to be real numbers.
As N is sufficiently large, both spectra become continuous point sets that form closed 1D loops over
the complex plane of frequency, respectively. The loop of OBC spectra covers zero area, surrounded by
the PBC spectra covering nonzero area with a nontrivial winding number [15]. To derive the relation
between the two wavevectors, we write down the electric field in the FP cavity

Ex = ZAm+β
N
+ + ZAm−β

N
− , (8)
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and apply perfect metal boundaries to both sides (z = 0 and Nd). As a result, we have

βN
+ = βN

− , or k+ − k− =
2πM

Nd
, (9)

where M is an integer denoting the number of half waves in the cavity. As N is sufficiently large
(thermodynamic limit), 2πM/(Nd) can be an arbitrary real number so that

|β+| = |β−|, or Im(k+) = Im(k−), (10)

meaning that the exponential decays of the forward and backward waves are the same, so as to satisfy
the OBCs at arbitrary length of the cavity. By solving Eq. (10), we have the GBZ of the PhCs. For
previous example with Hermiticity, k is always a real number for the bulk states, and therefore, GBZ
overlaps with the Brillouin zone (BZ). Note that Eq. (10) does not work for the edge states that are
self destructively interfered.

4. NON-HERMITIAN SKIN EFFECT AND DELOCALIZED EDGE STATES IN
ANOMALOUS PARITY-TIME SYMMETRIC PHOTONIC MATERIAL

Based on the TMM, the NHSE can be achieved in a tricky way. Without loss of generality, we multiply
both sides of Eq. (7) by a nonzero complex coefficient e−gd, which is

Ψ̃B(e
−gdTB)Ψ̃

−1
B Ψ̃ATAΨ̃

−1
A Ψ = (e−gdβ)Ψ, (11)

and suppose TB′ = e−gdTB and β′ = e−gdβ to have a new layer B′ and generalized phase shift β′ to
satisfy Eqs. (10) and (11) under OBC. Correspondingly, nB′± = nB ± ig/(ωdB) and k′ = k + ig. The
transform does not affect ω and Ψ, so the OBC spectra and Zak phase [17] are preserved; the only
change is the dispersion relation between ω and k′. Especially, we note that as Re(g) ̸= 0, |β′| ̸= 1, all
the Bloch states become evanescent, resulting in the NHSE. The decay rate is Im(k′) = Re(g) for the
bulk states, and Im(k′) = Re(g) + g0 for the edge states. Substituting the new refractive indices into
Eq. (4), we have

M =


n+ + n−

2Z

n+ − n−
2

n+ − n−
2

(n+ + n−)Z

2

 =

[
ϵ iκ
iκ µ

]
, (12)

where the chirality term κ = g/(ωdB). Correspondingly, the penetration depths of bulk states and edge
states are

δbulk =
1

|dBRe(κ)ω|
(13)

and

δedge =
1

|dBRe(κ)ω − 1/δ0|
, (14)

respectively. One can see that the penetration depth is tuned by κ and ω. For Re(κ) > 0, all states tend
to be localized leftwards. As the frequency increases, the localizations of bulk states become stronger
in a linear pattern, leading to smaller penetration depths that are inversely proportional to frequency.
For the edge states, it takes a range of frequency from ω = 0 to 1/(δ0dBRe(κ)) to offset the intrinsic
rightward localizations, where the penetration depth increases from δ0 to infinity. By choosing proper
values of κ, the penetration depth happens to be infinite for some edge states, giving rise to the DES.
As shown in Fig. 2, we plot the mode profiles of each eigen-state for κ = 0 and κ = 1/(2.5ω0δ0dB), and
the latter has DES at the third bandgap. For each state we mark the penetration depth by solid points
where the wavefunction is 1/e decayed from the boundary. As shown in Fig. 2(b), all the points are
set on the hyperbolic curves satisfying either Eqs. (13) or (14). The third edge state is exactly at the
asymptotic line of two branches, doubly confirming the delocalization. As a comparison in Fig. 2(a),
the system is Hermitian; the bulk states are extensive in the real space; and every edge state has δ0
skin depth to the right end.

From Eq. (12) we see that the material matrix is transpose symmetric, meaning that the material
of layer B′ satisfies the anomalous parity-time (HPT ) [18] symmetry. Here, H, P, and T denote



Progress In Electromagnetics Research, Vol. 172, 2021 37

0

0.0

1.5

2.5

3.5

5.0

z/d
0 205 01 15 0 205 01 15

z/d

4.5

0 1

|E| (a.u.)

0 0

0.5

bulkbulk

edgeedge

edgeedge

(a) (b)

Figure 2. Mode profiles of eigen-states in a piece of non-Hermitian PhCs with 20 unit-cells. (a) κ = 0.
All bulk states are extensive in the cavity, while all edge states are intrinsically localized at the right
end with penetration depth δ0. (b) κ = 1/(2.5ω0δ0dB). All bulk states are localized leftwards. The
edge states are localized rightwards as 0 < ω < 2.5ω0 and leftwards as ω > 2.5ω0. At ω = 2.5ω0, the
third edge state is delocalized. The penetration depths of all states are on three branches of hyperbolic
curves, described by Eqs. (13) and (14), respectively.

Table 1. Representations of Hermiticity, TRS, inversion symmetry, and some combinations of them.
Note R is the reciprocity operator. Constraints on the material matrix and constitutive parameters are
also listed.

Symmetry Wavefunction Material matrix Constitutive parameters

H [ Ex
Hy

] → [E∗
x,H

∗
y ] M = M† ϵ = ϵ∗, µ = µ∗

ξ = ζ∗

T [ Ex
Hy

] → [
E∗

x
−H∗

y
] M = σ3M∗σ3

ϵ = ϵ∗, µ = µ∗

ξ = −ξ∗, ζ = −ζ∗

P [ Ex
Hy

] → [−Ex
Hy

] M = σ3Mσ3 ξ = ζ = 0

R = HT [ Ex
Hy

] → [Ex,−Hy ] M = σ3MTσ3 ξ = −ζ

PT [ Ex
Hy

] → [
−E∗

x
−H∗

y
] M = M∗ ϵ = ϵ∗, µ = µ∗

ξ = ξ∗, ζ = ζ∗

HP [ Ex
Hy

] → [−E∗
x,H

∗
y ] M = σ3M†σ3

ϵ = ϵ∗, µ = µ∗

ξ = −ζ∗

HPT [ Ex
Hy

] → [−E∗
x,−H∗

y ] M = MT ξ = ζ
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Figure 3. Complex plane of κ, where we pick four points (corresponding to Figs. 4(a)–(d)) and label
the symmetries in each case, respectively.
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Figure 4. Band diagrams of four cases of κ in Fig. 3. (a) κ = 0, same as Fig. 1. (a1), (a2) Due to
the Hermiticity, the PBC/OBC spectra are rigorous real numbers and almost the same, except discrete
edge states in the bandgaps. Empty circles in (a2) denotes the standing wave under OBC that consists
of two states under PBC. (a3) Complete overlap of BZ and GBZ. (a4) Mode profile of a bulk state.
(a5) Mode profile of the first edge state localized at the right end. (b) κ = i. The system remains
Hermitian (b1) with an offset of wavevectors proportional to frequency, denoted by the dashed line.
(b4), (b5) Mode profiles of bulk and edge states. The phase shift is progressive along the unit-cells. (c)
κ = −0.89. Due to the preservation of TRS, the PBC/OBC spectra and GBZs are complex conjugate
to themselves, respectively. (c1), (c2) Because of the non-Hermiticity, PBC and OBC spectra no long
overlap. The first edge state locates at the contour of PBC spectra, indicating the delocalization. (c3)
All the GBZs lie inside the BZ, implying (c4) the leftward localization. (c5) DES. (d) κ = −0.89 + i.
(d1), (d2) Despite the breaking of TRS, the first edge state is still at the contour of PBC spectra. (d3)
GBZs of each band is no longer complex conjugate to themselves, but rotates around the original point
of β. (d4), (d5) Mode profiles of NHSE and DES with progressive phases.
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the Hermiticity, inversion symmetry, and time-reversal symmetry (TRS) operators, respectively; the
anomalous parity-time symmetry is the multiplication of the three symmetry operators.

To prove that material B′ satisfies HPT symmetry, we refer to the symmetry analysis. Given a
system described by the Maxwell’s equations DΨ = ωMΨ and a symmetry operator A, the system
after transform A is (ADA−1)(AΨ) = (AωA−1)(AMA−1)(AΨ). If the system is A invariant, then
M = AMA−1. As shown in Columns 2–4 in Table 1, the Hermiticity operator H performs the
Hermitian conjugation to the wavefunction, turning a right eigen-state to a left eigen-state; the TRS
operator is anti-unitary and flips the sign of the magnetic field; the inversion operator is unitary and
flips the sign of the electric field. Restrictions on the material matrix invariant to the symmetries are
listed in Column 3. With the three fundamental symmetries (respectively commutative), we list some
combinations of them to judge the symmetry satisfaction of material B′. As shown in the complex plane
of κ in Fig. 3, the material is HPT symmetric over the entire plane, and so long as κ ̸= 0, the material
is nonreciprocal. As κ is an imaginary number, the system is Hermitian and PT symmetric; as κ is a
real number, the system satisfies TRS and anomalous inversion (HP) symmetry.

5. TUNING PENETRATION DEPTH OF THE EDGE STATES BY CHIRALITY

To show how the NHSE and edge states are tuned by the chirality term, we choose four cases of κ
(corresponding to four points in Fig. 3) to calculate the dispersion relations, the PBC/OBC spectra,
the mode profiles of bulk and edge states, and the GBZs of the first four bands from zero frequency,
respectively, as shown in Fig. 4. We start with κ = 0, the origin of the κ space, as shown in Fig. 4(a),
which is already mentioned in Fig. 1. From Fig. 4(a) to Fig. 4(b), where κ turns into an imaginary
number, the wavevector is attached with a bias (Im(κ)dB/d)ω, performing an Arnold transform to the
dispersion relation, as shown in Fig. 4(b1). Unlike the ±π/2 phase in Figs. 4(a4), (a5), the phases
in Figs. 4(b4), (b5) are progressively shifted in a linear pattern, since the Bloch states comprising the
standing wave do not belong to a pair of opposite wavevectors, as shown in Fig. 4(b1). Due to the
Hermiticity of PhCs, the PBC/OBC spectra is preserved, and the GBZ overlaps with BZ, which is the
unit-circle in the complex plane of β.

Next, we introduce NHSE by allowing Re(κ) = 0.89, which delocalize the first edge state at
ω = ω0/2. As shown in Fig. 4(c), where κ is purely a real number, both the forward and backward
wavevectors are attached with an identical imaginary part to localize the states to the left boundary. Due
to the non-Hermiticity, PBC and OBC spectra split apart, while the first edge state is located exactly at
the contour of PBC spectra, meaning that this state does not need to add a nonzero imaginary part to
the wavevector to satisfy the OBC, implying that it is a DES, as shown in Fig. 4(c5). We note that the
material has HP symmetry [19], which is reported in another work on DES realized by tight-binding
model [13]. Besides, due to the TRS, the PBC/OBC spectra and the GBZ of each band overlap with
the complex conjugate of themselves, respectively.

Finally, as κ is generally a complex number, such as κ = 0.89 + i in Fig. 4(d), both real and
imaginary parts of the wavevector are tuned which result in both the progressive phase and NHSE.
Despite the breaking of TRS, the eigen-frequency of every state is preserved to be real numbers, and
the edge state is still on the contour of PBC spectra and therefore is delocalized.

6. DISCUSSIONS

We have thus proposed to realize the NHSE and DES in realistic photonic crystals with materials
obeying anomalous Parity-time symmetry, based on the ab initio calculation on Maxwell’s equations.
We reveal that, in general, the penetration depth of the eigen-state is inversely proportional to the
non-Hermitian chirality term κ and frequency ω, reflected as the hyperbolic curves in Fig. 2. With a
careful choice of κ, the offset between the penetration depth and the intrinsic decay length of the edge
state leads to the fully delocalized in-gap edge state, with eigen-frequency as a real number. This state
can thus serve as an ideal resonant mode with an isolated eigen-frequency and a high-quality factor,
which is useful in many aspects of photonics such as lasers, filters, and sensors. Besides, chiral material
with anomalous Parity-time symmetry guarantees the non-reciprocity, which provides an alternative
way to break reciprocity [20].



40 Yan, Chen, and Yang

ACKNOWLEDGMENT

The work at Zhejiang University was sponsored by the National Natural Science Foundation of
China (NNSFC) under Grants No. 61625502, No. 62175215, No. 11961141010, No. 61975176, and
No. U19A2054, the Top-Notch Young Talents Program of China, and the Fundamental Research Funds
for the Central Universities. The authors declare no conflicts of interest. Data underlying the results
presented in this paper are not publicly available at this time but may be obtained from the authors
upon reasonable request.

REFERENCES

1. Wang, K., A. Dutt, K. Y. Yang, C. C. Wojcik, J. Vučković, and S. Fan, “Generating arbitrary
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