Vol. 102
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2021-04-14
Marchenko Inversion of GPR Data for a 1D Dissipative Medium
By
Progress In Electromagnetics Research M, Vol. 102, 65-79, 2021
Abstract
Radar data collected on two sides of a horizontally dissipative layered medium are required to invert for the medium parameters. The two-sided reflection and transmission responses are reduced to two single-sided reflection responses. One is the measured dissipative medium response, and the other is the reflection response of the corresponding effectual medium, which has negative dissipation. Marchenko-type equations are solved using these two reflection responses. The obtained focusing functions in the dissipative and effectual media are used to invert for the permittivity and the permeability under the assumption of weak dissipation in reflection. Once these parameters are known, the travel times are used to estimate the layer thicknesses. Finally, the focusing functions are used to estimate the conductivity in each layer. The method does not require any model information and runs as a fully automated process. A numerical example shows that the method works well for a horizontally dissipative layered medium. Statistical analysis for several noise models shows that the method is robust at least up to 40 dB additive and multiplicative white noise.
Citation
Bingkun Yang, and Evert C. Slob, "Marchenko Inversion of GPR Data for a 1D Dissipative Medium," Progress In Electromagnetics Research M, Vol. 102, 65-79, 2021.
doi:10.2528/PIERM21020901
References

1. Amundsen, L., L. T. Ikelle, and L. E. Berg, "Multidimensional signature deconvolution and free-surface multiple elimination of marine multicomponent ocean-bottom seismic data," Geophysics, Vol. 66, No. 5, 1594-1604, 2001.
doi:10.1190/1.1486770

2. Benedetto, A., L. Pajewski, and eds., Civil Engineering Applications of Ground Penetrating Radar, Springer Transactions in Civil and Environmental Engineering, 2015.

3. Dukalski, M. and K. de Vos, "Marchenko inversion in a strong scattering regime in the presence of a free surface," Geophys. J Int., Vol. 212, No. 2, 760-776, 2018.

4. Ernst, J. R., A. G. Green, H. Maurer, and K. Holliger, "Application of a new 2D time-domain full-waveform inversion scheme to crosshole radar data," Geophysics, Vol. 72, No. 5, J53-J64, 2007.
doi:10.1190/1.2761848

5. Irving J. D., R. J. Knight, "Removal of wavelet dispersion from ground-penetrating radar data," Geophysics, Vol. 68, 960-970, 2003.
doi:10.1190/1.1581068

6. Kabanikhin, S., "Definitions and examples of inverse and ill-posed problems," J. Inverse Ill Posed Probl., Vol. 16, No. 4, 317-357, 2008.
doi:10.1515/JIIP.2008.019

7. Paige, C. C. and M. A. Saunders, "LSQR: An algorithm for sparse linear equations and sparse least squares," ACM T. Math. Software, Vol. 8, No. 1, 43-71, 1982.
doi:10.1145/355984.355989

8. Ravasi, M., "Rayleigh-Marchenko redatuming for target-oriented, true-amplitude imaging," Geophysics, Vol. 82, No. 6, S439-S452, 2017.
doi:10.1190/geo2017-0262.1

9. Slob, E., "Interferometry by deconvolution of multicomponent multioffset GPR data," IEEE Geosci. Remote Sens., Vol. 47, No. 3, 828-838, 2009.
doi:10.1109/TGRS.2008.2005250

10. Slob, E. and K. Wapenaar, "Coupled Marchenko equations for electromagnetic Green’s function retrieval and imaging," SEG Houston 2013 Annual Meeting, 1863-1867, Society Exploration Geophysicists, 2013.

11. Slob, E. and K. Wapenaar, "Data-driven inversion of GPR surface reflection data for lossless layered media," The 8th European Conference on Antennas and Propagation, 3378-3382, EUCAP, NL, 2014.

12. Slob, E., K. Wapenaar, F. Broggini, and R. Snieder, "Seismic reflector imaging using internal multiples with Marchenko-type equations," Geophysics, Vol. 79, No. 2, S63-S76, 2014.
doi:10.1190/geo2013-0095.1

13. Slob, E., "Green’s function retrieval and marchenko imaging in a dissipative acoustic medium," Phys. Rev. Lett., Vol. 116, No. 16, 1-6, 2016.
doi:10.1103/PhysRevLett.116.164301

14. Slob, E. and K. Wapenaar, "Theory for marchenko imaging of marine seismic data with free surface multiple eliminationg," 79th EAGE Conference & Exhibition, A1-A4, EAGE, NL, 2017.

15. Slob, E., "Theory for 1D full waveform inversion of surface GPR data," 17th International Conference on Ground Penetrating Radar, 306-309, Institute of Electrical and Electronics Engineers Inc., 2018.

16. Tarantola, A., Inverse Problem Theory and Methods for Model Parameter Estimation, Society for Industrial and Applied Mathematic, 2005.
doi:10.1137/1.9780898717921

17. Van Der Neut, J. and J. T. Fokkema, "One-dimensional marchenko inversion in stretched space," Proceedings of the International Workshop on Medical Ultrasound Tomography, 15-24, T. Hopp, N. Ruiter, J. C. Bamber, N. Duric, and K. W. A. van Dongen, Eds., 2017.

18. Wapenaar, C., M. Dillen, and J. T. Fokkema, "Reciprocity theorems for electromagnetic or acoustic one-way wave fields in dissipative inhomogeneous media," Radio Sci., Vol. 36, No. 5, 851-863, 2001.
doi:10.1029/2000RS002394

19. Wapenaar, K., J. Thorbecke, J. Van Der Neut, F. Broggini, E. Slob, and R. Snieder, Marchenko imaging,” Geophysics, Vol. 79, No. 3, WA39-WA57, 2014.
doi:10.1190/geo2013-0302.1

20. Yang, B. and E. Slob, "Theory for 1D GPR data inversion for a dissipative layered medium," 17th International Conference on Ground Penetrating Radar, 302-305, Institute of Electrical and Electronics Engineers Inc., 2018.

21. Yang, X., A. Klotzsche, G. Meles, H. Vereecken, and J. Van Der Kruk, "Improvements in crosshole GPR full-waveform inversion and application on data measured at the Boise Hydrogeophysics Research Site," J. Appl. Geophys., Vol. 99, 114-124, 2013.
doi:10.1016/j.jappgeo.2013.08.007