Vol. 102
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2021-04-16
A Hybrid Inversion Method Based on the Bat Algorithm for Microwave Imaging of Two-Dimensional Dielectric Scatterers
By
Progress In Electromagnetics Research M, Vol. 102, 91-104, 2021
Abstract
In this article, a hybrid inversion algorithm based on an innovative stochastic algorithm, namely, the bat algorithm (BA) is proposed. Electromagnetic inverse scattering problems are ill-posed and are often transformed into optimization problems by defining a suitable cost function. As typical methods to solve optimization problems, stochastic optimization algorithms are more flexible and have better global searching ability than deterministic algorithms. However, they share a common disadvantage: heavy computing load. This directly restricts the application of the algorithms in high-dimensional problems and real-time imaging environments. To solve this issue, diffraction tomography (DT) is introduced to provide a reference for the initialization of the BA. Furthermore, the hybrid method makes full use of the complementary advantages of linear reconstruction algorithms and stochastic optimization algorithms to improve accuracy and efficiency at the same time. Moreover, in order to avoid the algorithm falling into local extrema, a linear attenuation strategy of the pulse emission rate is proposed to enable more bats to perform global search in the early stage of the algorithm. In the numerical experiments for different types of dielectric objects, the reconstruction results of this hybrid BA-based algorithm are compared with those of the DT and the particle swarm optimization (PSO).
Citation
Chunxia Yang, Jian Zhang, and Mei Song Tong, "A Hybrid Inversion Method Based on the Bat Algorithm for Microwave Imaging of Two-Dimensional Dielectric Scatterers," Progress In Electromagnetics Research M, Vol. 102, 91-104, 2021.
doi:10.2528/PIERM21012803
References

1. Pastorino, M., Microwave Imaging, Vol. 208, John Wiley & Sons, 2010.
doi:10.1002/9780470602492

2. Colton, D. and R. Kress, Inverse Acoustic and Electromagnetic Scattering Theory, Vol. 93, Springer Nature, 2019.
doi:10.1007/978-3-030-30351-8

3. Bolomey, J. C., A. Izadnegahdar, L. J. Roca, C. P. Du Mezeray, and G. Peronnet, "Microwave diffraction tomography for biomedical applications," IEEE Transactions on Microwave Theory and Techniques, Vol. 30, No. 11, 1998-2000, 1982.
doi:10.1109/TMTT.1982.1131357

4. Abubakar, A., P. M. Van den Berg, and J. J. Mallorqui, "Imaging of biomedical data using a multiplicative regularized contrast source inversion method," IEEE Transactions on Microwave Theory and Techniques, Vol. 50, No. 7, 1761-1771, 2002.
doi:10.1109/TMTT.2002.800427

5. Shea, J. D., P. Kosmas, S. C. Hagness, and B. D. Van Veen, "Three-dimensional microwave imaging of realistic numerical breast phantoms via a multiple-frequency inverse scattering technique," Medical Physics, Vol. 37, No. 8, 4210-4226, 2010.
doi:10.1118/1.3443569

6. Lu, Y., J. Zhao, and G. Wang, "Edge-guided dual-modality image reconstruction," IEEE Access, Vol. 2, 1359-1363, 2014.
doi:10.1109/ACCESS.2014.2371994

7. Caorsi, S., A. Massa, M. Pastorino, and M. Donelli, "Improved microwave imaging procedure for nondestructive evaluations of two-dimensional structures," IEEE Transactions on Antennas and Propagation, Vol. 52, No. 6, 1386-1397, 2004.
doi:10.1109/TAP.2004.830254

8. Almeida, E. R., J. L. Porsani, I. Catapano, G. Gennarelli, and F. Soldovieri, "Microwave tomography-enhanced GPR in forensic surveys: The case study of a tropical environment," IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, Vol. 9, No. 1, 115-124, 2015.
doi:10.1109/JSTARS.2015.2466556

9. Goodman, D., "Ground-penetrating radar simulation in engineering and archaeology," Geophysics, Vol. 59, No. 2, 224-232, 1994.
doi:10.1190/1.1443584

10. Frigui, H., L. Zhang, and P. D. Gader, "Context-dependent multisensor fusion and its application to land mine detection," IEEE Transactions on Geoscience and Remote Sensing, Vol. 48, No. 6, 2528-2543, 2010.
doi:10.1109/TGRS.2009.2039936

11. Gurbuz, T. U., B. Aslanyurek, E. P. Karabulut, and I. Akduman, "An efficient nonlinear imaging approach for dielectric objects buried under a rough surface," IEEE Transactions on Geoscience and Remote Sensing, Vol. 52, No. 5, 3013-3022, 2013.
doi:10.1109/TGRS.2013.2268662

12. Chen, G., J. Pei, F. Yang, X. Y. Zhou, Z. Sun, and T. J. Cui, "Terahertz-wave imaging system based on backward wave oscillator," IEEE Transactions on Terahertz Science and Technology, Vol. 2, No. 5, 504-512, 2012.
doi:10.1109/TTHZ.2012.2210282

13. Jiang, Y., Y. Qin, H. Wang, B. Deng, K. Liu, and B. Cheng, "A side-lobe suppression method based on coherence factor for terahertz array imaging," IEEE Access, Vol. 6, 5584-5588, 2018.
doi:10.1109/ACCESS.2018.2799180

14. Chew, W. C., Waves and Fields in Inhomogeneous Media, IEEE Press, 1995.

15. Bleistein, N. and J. K. Cohen, "Nonuniqueness in the inverse source problem in acoustics and electromagnetics," Journal of Mathematical Physics, Vol. 18, No. 2, 194-201, 1977.
doi:10.1063/1.523256

16. Devaney, A. and G. Sherman, "Nonuniqueness in inverse source and scattering problems," IEEE Transactions on Antennas and Propagation, Vol. 30, No. 5, 1034-1037, 1982.
doi:10.1109/TAP.1982.1142902

17. Slaney, M., A. C. Kak, and L. E. Larsen, "Limitations of imaging with first-order diffraction tomography," IEEE Transactions on Microwave Theory and Techniques, Vol. 32, No. 8, 860-874, 1984.
doi:10.1109/TMTT.1984.1132783

18. Habashy, T. M. and A. Abubakar, "A general framework for constraint minimization for the inversion of electromagnetic measurements," Progress In Electromagnetics Research, Vol. 46, 265-312, 2004.
doi:10.2528/PIER03100702

19. Shah, P., U. K. Khankhoje, and M. Moghaddam, "Inverse scattering using a joint l1–l2 norm-based regularization," IEEE Transactions on Antennas and Propagation, Vol. 64, No. 4, 1373-1384, 2016.
doi:10.1109/TAP.2016.2529641

20. De Zaeytijd, J., A. Franchois, and J.-M. Geffrin, "A new value picking regularization strategyapplication to the 3-d electromagnetic inverse scattering problem," IEEE Transactions on Antennas and Propagation, Vol. 57, No. 4, 1133-1149, 2009.
doi:10.1109/TAP.2009.2015823

21. Van Den Berg, P. M. and R. E. Kleinman, "A contrast source inversion method," Inverse Problems, Vol. 13, No. 6, 1607, 1997.
doi:10.1088/0266-5611/13/6/013

22. Chen, X., "Application of signal-subspace and optimization methods in reconstructing extended scatterers," Journal of the Optical Society of America A, Vol. 26, No. 4, 1022-1026, 2009.
doi:10.1364/JOSAA.26.001022

23. Chen, X., "Subspace-based optimization method for solving inverse-scattering problems," IEEE Transactions on Geoscience and Remote Sensing, Vol. 48, No. 1, 42-49, 2009.
doi:10.1109/TGRS.2009.2025122

24. Wang, Y. and W. C. Chew, "An iterative solution of the two-dimensional electromagnetic inverse scattering problem," International Journal of Imaging Systems and Technology, Vol. 1, No. 1, 100-108, 1989.
doi:10.1002/ima.1850010111

25. Donelli, M., D. Franceschini, A. Massa, M. Pastorino, and A. Zanetti, "Multi-resolution iterative inversion of real inhomogeneous targets," Inverse Problems, Vol. 21, No. 6, S51, 2005.
doi:10.1088/0266-5611/21/6/S05

26. Kennedy, J., "Swarm intelligence," Handbook of Nature-inspired and Innovative Computing, 187-219, Springer, 2006.
doi:10.1007/0-387-27705-6_6

27. Engelbrecht, A. P., Fundamentals of Computational Swarm Intelligence, John Wiley & Sons, Ltd., Hoboken, 2005.

28. Rocca, P. M. B., M. Donelli, D. Franceschini, and A. Massa, "Evolutionary optimization as applied to inverse scattering problems," Inverse Problems, Vol. 25, No. 12, 123003, 2009.
doi:10.1088/0266-5611/25/12/123003

29. Rocca, P., G. Oliveri, and A. Massa, "Differential evolution as applied to electromagnetics," IEEE Antennas and Propagation Magazine, Vol. 53, No. 1, 38-49, 2011.
doi:10.1109/MAP.2011.5773566

30. Salucci, M., L. Poli, N. Anselmi, and A. Massa, "Multifrequency particle swarm optimization for enhanced multiresolution GPR microwave imaging," IEEE Transactions on Geoscience and Remote Sensing, Vol. 55, No. 3, 1305-1317, 2016.
doi:10.1109/TGRS.2016.2622061

31. Donelli, M. and A. Massa, "Computational approach based on a particle swarm optimizer for microwave imaging of two-dimensional dielectric scatterers," IEEE Transactions on Microwave Theory and Techniques, Vol. 53, No. 5, 1761-1776, 2005.
doi:10.1109/TMTT.2005.847068

32. Caorsi, S., M. Donelli, A. Lommi, and A. Massa, "Location and imaging of two-dimensional scatterers by using a particle swarm algorithm," Journal of Electromagnetic Waves and Applications, Vol. 18, No. 4, 481-494, 2004.
doi:10.1163/156939304774113089

33. Yang, X.-S. and A. H. Gandomi, "Bat algorithm: A novel approach for global engineering optimization," Engineering Computations, Vol. 29, No. 5, 464-483, 2012.
doi:10.1108/02644401211235834

34. Hasancebi, O., T. Teke, and O. Pekcan, "A bat-inspired algorithm for structural optimization," Computers & Structures, Vol. 128, 77-90, 2013.
doi:10.1016/j.compstruc.2013.07.006

35. Sabba, S. and S. Chikhi, "A discrete binary version of bat algorithm for multidimensional knapsack problem," International Journal of Bio-inspired Computation, Vol. 6, No. 2, 140-152, 2014.
doi:10.1504/IJBIC.2014.060598

36. Cai, X., L. Wang, Q. Kang, and Q. Wu, "Adaptive bat algorithm for coverage of wireless sensor network," International Journal of Wireless and Mobile Computing, Vol. 8, No. 3, 271-276, 2015.
doi:10.1504/IJWMC.2015.069411

37. Cui, Z., F. Li, and Q. Kang, "Bat algorithm with inertia weight," Chinese Automation Congress, 792-796, 2015.

38. Yang, X.-S. and X. He, "Bat algorithm: Literature review and applications," International Journal of Bio-inspired Computation, Vol. 5, No. 3, 141-149, 2013.
doi:10.1504/IJBIC.2013.055093

39. Cai, X., W. Li, Q. Kang, L. Wang, and Q. Wu, "Bat algorithm with oscillation element," International Journal of Innovative Computing and Applications, Vol. 6, No. Nos. 3–4, 171-180, 2015.
doi:10.1504/IJICA.2015.072997

40. Xue, F., Y. Cai, Y. Cao, Z. Cui, and F. Li, "Optimal parameter settings for bat algorithm," International Journal of Bio-Inspired Computation, Vol. 7, No. 2, 125-128, 2015.
doi:10.1504/IJBIC.2015.069304

41. Bergh, F. V. D. and A. P. Engelbrecht, "Effects of swarm size on cooperative particle swarm optimisers," Proceedings of the 3rd Annual Conference on Genetic and Evolutionary Computation, 892-899, 2001.

42. Shi, Y. and R. C. Eberhart, "Empirical study of particle swarm optimization," Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406), Vol. 3, 1945-1950, IEEE, 1999.
doi:10.1109/CEC.1999.785511

43. Dozier, G. and A. Carlisle, "An off-the-shelf PSO," Proc. of the Particle Swarm Optimization Workshop, 1-6, 2001.