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A Hybrid Inversion Method Based on the Bat Algorithm for
Microwave Imaging of Two-Dimensional Dielectric Scatterers
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Abstract—In this article, a hybrid inversion method based on the bat algorithm (BA) is proposed.
Electromagnetic inverse scattering problems are ill-posed and are often transformed into optimization
problems by defining a suitable cost function. As typical methods to solve optimization problems,
stochastic optimization algorithms are more flexible and have better global searching ability than
deterministic algorithms. However, they share a common disadvantage: heavy computing load. This
directly restricts the application of the algorithms in high-dimensional problems and real-time imaging
environments. To solve this issue, diffraction tomography (DT) is introduced to provide a reference for
the initialization of the BA. Furthermore, the hybrid method makes full use of the complementary
advantages of linear reconstruction algorithms and stochastic optimization algorithms to improve
accuracy and efficiency at the same time. Moreover, in order to avoid the algorithm falling into local
extrema, an attenuation strategy of the pulse emission rate is proposed to enable more bats to perform
global search in the early stage of the algorithm. In the numerical experiments for different types of
dielectric objects, the reconstruction results of this hybrid BA-based algorithm are compared with those
of the DT and particle swarm optimization (PSO).

1. INTRODUCTION

Electromagnetic inverse scattering refers to the process of using electromagnetic waves to illuminate the
imaging region and then estimating the distribution of scatterers according to the echo information [1, 2].
As a non-contact imaging model, it has been widely used in medical diagnostics [3–6], nondestructive
testing [7], geophysical applications, buried object detection [8–11], etc. [12, 13]. However, the inverse
scattering problem is much more complex than the forward one. It is nonlinear due to the multiple
scattering phenomenon, which indicates that the scattered field formed by two scatterers is not equal
to the linear superposition of the scattered field formed by each of the scatterers [14]. Furthermore, the
limitation of the frequency spectrum makes the solution of the inverse problem non-unique [15, 16].
The reconstructed image is a low-pass filtered version of the original object [17]. If the object
has some fine structures which are small compared to the wavelength of the incident wave, local
evanescent wave will be formed. The evanescent wave is oscillating electromagnetic field that does
not propagate and is thus difficult to capture outside the imaging domain. Therefore, the exploration of
efficient electromagnetic inversion methods has been an important research direction in computational
electromagnetics. Especially in recent years, the rapid development of large-scale computing machines
and parallel computing technologies made it possible to solve complex inverse scattering problems and
realize many novel inversion algorithms.

Due to the ill-posedness of inverse scattering problems, they are often transformed into optimization
problems [18–20]. Generally, optimization methods can be divided into deterministic ones and stochastic
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ones. The optimization process of deterministic algorithms relies on the gradient information of the
cost function [21, 22]. So, when the initial solution and the number of iterations are determined, the
final solution will always be the same no matter how many times the algorithm is repeated. With the
help of the gradient, deterministic algorithms could achieve high efficiency, and the optimal solution
can be obtained after a few iterations [23–25]. However, with the wide application of inverse scattering
in engineering, complex models and imaging environments make the problem even more challenging.
The overdependence on gradient may cause deterministic algorithms to fall into local extrema and yield
false solutions.

The use of stochastic optimization algorithms could alleviate this problem. The introduction of
random factors enables the algorithms to jump out of the attractive domain of local extrema [26].
Moreover, compared with deterministic algorithms, stochastic optimization algorithms have two
significant advantages. First, in the implementation of stochastic optimization algorithms, one does
not need to analyze the cost function. And the complicated mathematical derivation can be avoided.
Second, stochastic optimization algorithms are more flexible. By adjusting the control parameters
and imposing restrictions, they can make full use of the a priori information to avoid yielding invalid
solutions [27]. The application bottleneck of stochastic optimization algorithms is that global search
may bring heavy computing load. Fortunately, the efficiency of the algorithm can be improved by virtue
of its inherent parallelism.

The first stochastic optimization algorithm applied to electromagnetic inverse scattering problems
was genetic algorithm (GA) [28]. The GA simulates the evolution process of organisms by performing
the selection, crossover, and mutation operations. Subsequently, the differential evolution algorithm
(DE) [29] and PSO [30–32] were also introduced to microwave imaging. The PSO simulates the foraging
behavior of birds. Individuals in the population communicate and collaborate during the search process
and eventually gather near the food source. The PSO is characterized by the particle’s ability to
remember and learn from other individuals. The imitation of biological evolution or foraging behavior
gives such algorithms some natural intelligence. This is why they are also called heuristic algorithms.

In recent years, a new nature-inspired optimization algorithm, the bat algorithm (BA), attracted
attentions from many researchers. The BA was proposed by Yang et al. in 2010 [33]. It imitates the
foraging behavior of microbats and exploits their echolocation ability. Similar to the PSO, each location
of the individual represents a possible solution to the problem. The main control parameters in the
BA include pulse emission rate, frequency, and loudness. The most significant difference between the
BA and other heuristic algorithms is that individuals only move to positions that are better than their
current ones [34, 35]. Another difference is that the BA has two iterating approaches: global search
and local search [36]. Bats performing the local search will search for a new random location near
the current optimal solution [37]. The BA has been successfully applied to many practical engineering
problems [38, 39], but the research in the field of microwave imaging is still immature. In this paper,
we reconstruct dielectric objects with a hybrid BA-based inversion algorithm.

In this paper, two modifications to the standard BA are proposed to improve the performance and
make it applicable in microwave imaging problems. First, a decreasing strategy of the pulse emission
rate is adopted to improve the global search ability of the algorithm at the early stage of optimization.
Second, a hybrid inversion strategy is designed. The reconstruction result of DT is taken as an initial
trial solution of the BA. This trial solution provides guidance for the individual initialization of the
stochastic optimization algorithm so that optimal results can be achieved with fewer iterations.

The paper is organized as follows. The imaging model and related formulas of a 2-D electromagnetic
inverse scattering problem will be given in Section 2. The cost function including the regularization
term will also be defined here. The steps of the BA and its customized improvements are described in
Section 3. The flowchart of the hybrid inversion algorithm is also given in this section. In Section 4,
several numerical examples for imaging typical objects in 2-D are presented to illustrate the proposed
approach, and good imaging results can be observed.

2. MICROWAVE IMAGING PROBLEM

Consider a microwave imaging model as shown in Fig. 1. The imaging domain Di is defined in the free
space with a permittivity ε0 and a permeability μ0. An unknown dielectric object is enclosed in the
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Figure 1. Microwave imaging model.

imaging domain. The permittivity and permeability of the object are ε(x, y) and μ(x, y), respectively.
Microwave imaging is a non-contact method, which means that the transmitting and receiving stations
of electromagnetic waves are arranged in the observation domain Do outside the imaging domain. Here,
we consider a 2-D inversion problem and use totally V incident TMz waves to illuminate the imaging
domain successively. Electric current is induced on the unknown object, generating scattered field which
is received by the observation stations.

The governing equations of this electromagnetic inverse scattering problem are the following electric
field integral equations [14]:

Esca(x, y) = Etot(x, y) − Einc(x, y)

= k2
0

∫
Di

g(x, y;x′, y′) · O(x′, y′)Etot(x′, y′) dx′dy′, (x, y) ∈ Do, (1)

and

Etot(x, y) = Einc(x, y)

+k2
0

∫
Di

g(x, y;x′, y′) · O(x′, y′)Etot(x′, y′) dx′dy′, (x, y) ∈ Di, (2)

where Esca
z (x, y), Etot

z (x, y), and Einc
z (x, y) denote the scattered field, total field, and incident field,

respectively. Coordinates (x, y) and (x′, y′) denote the field point and source point, respectively.
In Eq. (1), g(x, y;x′, y′) = i

4H
(1)
0 (k0

√
(x − x′)2 + (y − y′)2) is the 2-D Green’s function in the free

space, and H
(1)
0 is the zero-order Hankel function of the first kind. k0 is the wave number in the

background. Here, the contrast that indicates the unknown scatterer is related to the distribution of
the relative permittivity O(x, y) = εr(x, y) − 1 because the object is assumed to be non-magnetic.

To transform the continuous equations into discrete ones, we divide the imaging domain into N
cells and use rectangular basis function to expand the contrast, yielding O(x, y) =

∑N
n=1 anbn(x, y). In

this discretization scheme, the contrast within each cell is assumed to be constant.
The inverse scattering integral equation cannot be solved directly because it is ill-posed. One

approach is to transform it into an optimization problem by adding a regularization term. Define the
following cost function [14]:

C(an) = δ
∑
n,m

ana∗m

∫
Di

bn(x′, y′)b∗m(x′, y′) dx′dy′ +
∑

v

∑
(x,y)∈Do

∣∣∣∣Esca
v (x, y)

−k2
0

∑
n

an

∫
Di

g(x, y;x′, y′) · bn(x′, y′)Etot
v (x′, y′) dx′dy′

∣∣∣∣
2

. (3)
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The first term on the right hand side is the regularization term, which corresponds to the norm of
the contrast. This could help avoid getting multiple solutions. The second term is the error between
the measured scattered field data and the predicted or calculated data. It consists of contributions from
totally V incident fields. δ is a regularization parameter and works to adjust the weight of the two terms
in this optimization model. With the defined cost function, the inverse scattering problem is recast as
the optimization for coefficients an.

3. APPLICATION OF THE BAT ALGORITHM

The BA is a multi-agent optimization algorithm that simulates the foraging behavior of bats. In the BA,
bats fly around in the multi-dimensional solution space and adjust their positions according to certain
rules. Unlike other stochastic optimization algorithms, the BA takes inspiration from the echolocation
ability of bats and adjusts the individuals’ flight states through control parameters including frequency,
loudness, and pulse emission rate. Note that the frequency as a control parameter is not related to
the frequency of electromagnetic wave. The major steps of the BA and the improvements made in this
paper can be summarized as follows.

3.1. Initialization

Set the iteration counter to t = 0. Set the population size P , the maximum number of iterations K
(or some other iteration termination conditions), and the frequency range [fmin, fmax]. Then a swarm
of P bats is initialized by randomly generating the associated locations {xi(t)|i = 1, 2, . . . , P, t = 0}
and velocities {vi(t)|i = 1, 2, . . . , P, t = 0} within the specified ranges [xmin, xmax] and [vmin, vmax],
respectively. Initialize the loudness {Ai(t)|i = 1, 2, . . . , P, t = 0} and the pulse emission rate
{ri(t)|i = 1, 2, . . . , P, t = 0} for the bats.

These control parameters are selected based on the a priori information of the inverse problem. The
parameters bring two advantages to stochastic optimization algorithms. One is flexibility. The search
direction and step size of each individual can be adjusted by control parameters. The deterministic
algorithms, however, are entirely dependent on the gradient of the cost function. Another advantage
is the ability to impose constraints. Appropriate constraints can prevent the algorithm from yielding
false solutions that have no physical meanings or do not meet the specific requirements of the problem.
In this paper, we only specify the upper and lower limits of position, which correspond to the value
range of contrast in the inverse scattering problem. Actually, more information about scatterers such
as number, shape, and central point can be added to stochastic optimization algorithms as constraints.
This also helps to narrow the solution space.

Next, the fitness of each bat is evaluated by the cost function in Eq. (3). Then the best fitness
value and its corresponding position are marked as fbest and p∗, respectively. In subsequent iterations,
new fitness values are calculated and compared to update fbest and p∗. It is ensured that they always
represent the best fitness value and position achieved by the population.

3.2. Position Updating

The BA has two search modes: global search and local search. In each iteration, based on a certain
probability, each bat randomly chooses to search within a global range or a local range. This probability
is determined by the pulse emission rate and is independent of other individuals. To be specific, at
moment t, a random variable rand1 ∈ (0, 1) is drawn from a uniform distribution. If rand1 < ri(t),
then the ith bat performs global searching. Otherwise, it searches locally.

The iterating formula of global search can be represented as
x′

i(t + 1) = xi(t) + vi(t + 1), (4)
and the velocity updating equation at moment t + 1 can be written as

vi(t + 1) = vi(t) + (xi(t) − p∗) · fi(t), (5)
where the frequency fi(t) is a random number within [fmin, fmax]. The second term of the above equation
shows that the bat is trying to move away from the current best position p∗. That’s why this update
mode is called global search. The higher the frequency is, the farther the bat tries to fly away from p∗.
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The local search does not depend on velocity. In this mode, the bat’s position is updated according
to the following equation.

x′
i(t + 1) = p∗ + rand2 · Ā(t), (6)

where rand2 is randomly drawn from a uniform distribution within (−1, 1), and Ā(t) =
∑P

i=1 Ai(t)/P
represents the average loudness of all bats at moment t. Obviously, bats in local search mode wander
around the current best location.

Notice that the bat position of the new generation in the above equations is expressed as x′
i(t + 1),

not xi(t + 1). That is because the bat still needs to decide whether to move to this new location.
Only when the following two conditions are met does the bat move to x′

i(t + 1); otherwise, the bat
will remain at xi(t). First, the fitness corresponding to x′

i(t + 1) is better than that of xi(t), i.e.,
C(x′

i(t + 1)) < C(xi(t)). Second, rand3 < Ai(t), where rand3 ∈ (0, 1) is an uniformly distributed
random number.

3.3. Loudness and Pulse Emission Rate Updating

In the standard BA, the loudness decreases, and the pulse emission rate increases as the iterations
proceed. In the t + 1th iteration, if the bat moves to a new position, its loudness and pulse emission
rate are updated to

Ai(t + 1) = αAi(t), (7)

and
ri(t + 1) = ri(0) ·

(
1 − e−γt

)
, (8)

where α and γ are constant parameters. Equation (6) shows that loudness affects the local search scope
of bats. As the bat approaches the prey, loudness decreases. And α is similar to the cooling factor in
the simulated annealing algorithm. The rate of pulse can simply be in the range of [0, 1], where 0 means
no pulse, and 1 indicates the maximum pulse emission rate.

3.4. Improvements to the Standard BA

One of the proposed improvements is the attenuation strategy of the pulse emission rate. The pulse
emission rate determines the probability, based on which bats choose to perform global or local searches.
The higher the pulse emission rate is, the greater the probability that bats perform global searches is. In
Equation (8), the pulse emission rate increases exponentially to ri(0). Numerical simulations show that
the pulse emission rate is too low to provide effective global search in the early stage of the algorithm
when it is applied to inverse scattering problems. Therefore, here we propose an attenuation strategy
to control the variation of the pulse emission rate.

ri(t + 1) = ξri(t) (9)

where ξ ∈ (0, 1) is a constant parameter. This improvement allows more bats to perform global searches
in the early stages of the algorithm, avoiding the algorithm falling into local extrema.

Computational efficiency is the bottleneck that blocks the application of stochastic optimization
algorithms in electromagnetic inverse problems. In order to improve the efficiency for solving inverse
problems, a linear inversion algorithm is introduced to form a hybrid electromagnetic inversion algorithm
together with the BA. The result of DT is used as one of the initial trial solutions of the subsequent
stochastic optimization. Microwave DT is a linearized electromagnetic inversion technology based on the
Born approximation. It establishes a relationship between the scattered field and the electromagnetic
properties of the scatterer through Fourier transform. Compared with the randomly generated trial
solutions, the DT result is closer to the optimal location. So, the imaging result with high reconstruction
accuracy can be achieved with fewer iterations. The flowchart of the hybrid BA is shown in Fig. 2, and
the modifications to the original BA is highlighted using bold text.
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Figure 2. The flow chart of the hybrid BA-based algorithm.
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4. NUMERICAL ANALYSIS

In this section, numerical experiments of two-dimensional dielectric scatterers are carried out to assess
the effectiveness of the hybrid BA-based inversion algorithm. And the imaging results from the DT and
the PSO are presented for comparison. The scattered data are generated using a 2-D integral equation
solver with Matlab, and the simulation configuration is shown in Fig. 1. The implementation of DT
can be found in [14], and the PSO is implemented according to [26] and [31].

In [31], the PSO is used to reconstruct 2-D dielectric objects, and the optimization results are
obtained after 10,000 iterations. On the other hand, in our methods, only a few hundreds of iterations
are needed. Therefore, in order to fairly compare the inversion performance of the PSO and BA,
diffraction tomographic images are also used as an initial guess of the PSO.

In test 1, the imaging domain is a square area of 60 cm × 60 cm in the free space. The center
of the square is set as the origin of the coordinate system. Outside the imaging area, 18 transducers
are evenly distributed on a circle with a radius of 2 m and centered at the origin. During the imaging
process, each transducer emits 1 GHz TMz waves in turn while all transducers record the scattered field
data. This generates a complex matrix of size 18× 18 for reconstruction. This exact configuration is an
example. The cost function is irrelevant to the distance and frequency. The algorithm should stay valid
for different configurations. The imaging domain is evenly divided into N = 9 × 9 = 81 small squares,
and it is assumed that permittivity is uniform within each cell.

When setting the parameters in the hybrid BA, we referred to the conclusions of related
literatures [38, 40] and made calibrations specifically for the inverse problems in this paper. The
result of the calibration is given as follows. The frequency is between 0 and 2; the initial values
of loudness {Ai(0)|i = 1, 2, . . . , P} are set to random values between [0, 1]; the pulse emission rate
{ri(0)|i = 1, 2, . . . , P} is randomly initialized within [0, 0.1]; the parameters α in Equation (7) and ξ
in Equation (9) are set to 0.99 and 0.9, respectively. Finally, the swarm sizes of the hybrid BA and
PSO are both set to 50 (the number of particles is usually between 20 and 60 [41–43]). The control
parameters of PSO are set as follows: the cognitive acceleration coefficient and the social acceleration
coefficient are both set as 2.0, and the weight coefficient is 0.4 (these settings are consistent with [31]).

The objects to be reconstructed are isolated dielectric points with relative permittivity between
1.4 and 2.0, as shown in Fig. 3(a). The imaging result of the DT is shown in Fig. 3(b), which is a
low-pass representation of the original scatterer. The optimization results of the PSO and the hybrid
BA after 200 iterations are shown in Figs. 3(c) and (d), respectively. Fig. 4 depicts the convergence
trajectory of the cost function value versus the number of iterations in the BA. In order to explicitly
compare the real and reconstructed relative permittivity values of each cell, Fig. 5 plots the contrast
distribution in a one-dimensional view. Next, to further test the robustness of the algorithm, Gaussian
white noises were added to the scattered field data. Three cases, respectively with 20 dB, 10 dB, and
5dB of signal-to-noise ratio (SNR), are studied, and the corresponding imaging results of the BA-based
inversion algorithm are shown in Fig. 6. The corresponding convergence curves are depicted in Fig. 7.

It can be observed from these numerical results that the BA-based inversion algorithm can
accurately reconstruct the location and permittivity value of each scattering point even in the presence
of strong noise. However, the optimization results of the PSO-based and hybrid BA-based inversions
are not notably different. Next, a more complex inversion target is introduced to further verify the
effectiveness of the BA-based inversion method and its advantages over other algorithms.

In test 2, the imaging area is expanded to a size of 1m×1m. The target consists of two homogeneous
squares with 0.21 m side length. The first square is centered at (−0.14m,−0.14m) and has a relative
permittivity of εr = 2.5. The other one is centered at (0.07m, 0.07m) and has a relative permittivity
of εr = 2.0.

The actual profile, the reconstructed image by DT, and the image by the PSO are shown in
Figs. 8(a), (b), and (c), respectively. The reconstructed image by DT is very fuzzy, and the PSO
can roughly reconstruct the outline of the target. The results of Figs. 8(d) and (e) are both obtained
by BA optimization, and the difference is the updating rule of pulse emission rate. The traditional
exponential increasing formula is adopted to generate the image of (d), and the modified decreasing
strategy is adopted to generate (e). It can be found that the modified strategy yields a more accurate
reconstruction. As seen from the convergence curves in Fig. 9, the PSO appears precocious and falls
into a local extremum, while the improved BA has better convergence effect than the traditional BA.
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Figure 3. Reconstructed contrast distribution of isolated scatter points. (a) The exact profile. (b)
The reconstructed image by the DT. (c) The reconstruction result by the PSO. (d) The reconstruction
result by the BA.
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Figure 6. Reconstructed contrast distribution of isolated scatter points with noisy data. Imaging
results by the proposed algorithm with SNR: (a) 20 dB, (b) 10 dB and (c) 5 dB.
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Figure 7. Reconstruction of isolated scatter points with noisy data. The convergence trajectory of the
BA.

The reconstruction results with noise contamination are also presented. In Fig. 10, reconstruction
results when SNR = 20 dB, 10 dB, and 5dB are shown by (a), (b), and (c), respectively. It can be
observed that the BA-based algorithm is also able to reconstruct complex objects in a noisy environment.
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Figure 8. Reconstructed contrast distribution of two homogeneous squares with 0.21 m side length
(εr1 = 2.5, εr2 = 2.0). (a) The true objects. (b) The reconstructed image by the DT. (c) The imaging
result by the PSO. (d) The image by the conventional BA. (e) The image by the hybrid BA.

In terms of computational efficiency, the BA-based algorithm shares the same complexity as the
PSO method. The code is implemented using Matlab and evaluated on a computer using Intel i5-8500u
CPU and 16 GB memory. The DT is extremely efficient and takes around 0.001 s and 0.002 s for test 1
and test 2, respectively. The reconstruction test 1 using PSO and BA-based algorithm takes 580.03 s
and 659.68 s, respectively. Test 2 takes 11595.00 s and 9114.68 s for PSO and BA-based algorithm
respectively. The reason that PSO is more efficient in test 1 is that when the individuals converge to
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Figure 9. The convergence curves in test 2. The curves correspond to the PSO, the conventional BA,
and hybrid BA respectively.
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Figure 10. Reconstructed contrast distribution of two square scatterers with noisy data. Imaging
results by the proposed algorithm with SNR: (a) 20 dB, (b) 10 dB and (c) 5 dB.
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the solution, the corresponding system matrices of forward scattering equation are better-conditioned
and thus require fewer iterations to solve. Other than this, the BA-based algorithm and PSO share
similar computational complexity.

5. CONCLUSION

In this paper, a hybrid BA-based inversion algorithm is proposed to solve electromagnetic inverse
scattering problems. First, an initial image of the scatterer is obtained by the DT. Then a hybrid BA
optimization is applied to reconstruct the target with higher accuracy.

In standard BA, the initial position of the individual is generated by random selection in the search
space, and it often needs many iterations to find the optimal solution. Since computational efficiency
is the bottleneck that blocks the application of stochastic optimization algorithms to electromagnetic
inverse problems, we propose a hybrid inversion strategy. It could greatly reduce the number of iterations
and combine the efficiency of the linear reconstruction algorithm with the precision of the stochastic
optimization algorithm. Moreover, in order to avoid the optimization falling into local minima, the
exponential increasing law of pulse emission rate is replaced with a decreasing scheme to improve the
global searching ability of the algorithm in the early stage.

The numerical simulation results show that this hybrid BA-based inversion algorithm can effectively
reconstruct 2-D dielectric targets, even in the presence of strong noises. And the reconstruction accuracy
of complex scatterers is better than that of the DT and PSO. Future research will focus on larger and
more complex microwave imaging problems to further test and improve the performance of the inversion
algorithm.

ACKNOWLEDGMENT

This work was supported in part by the Shanghai Sailing Program under Grant 18YF1418600 and in
part by the National Natural Science Foundation of China under Grant 61801293.

REFERENCES

1. Pastorino, M., Microwave Imaging, Vol. 208, John Wiley & Sons, 2010.
2. Colton, D. and R. Kress, Inverse Acoustic and Electromagnetic Scattering Theory, Vol. 93, Springer

Nature, 2019.
3. Bolomey, J. C., A. Izadnegahdar, L. J. Roca, C. P. Du Mezeray, and G. Peronnet, “Microwave

diffraction tomography for biomedical applications,” IEEE Transactions on Microwave Theory and
Techniques, Vol. 30, No. 11, 1998–2000, 1982.

4. Abubakar, A., P. M. Van den Berg, and J. J. Mallorqui, “Imaging of biomedical data using a
multiplicative regularized contrast source inversion method,” IEEE Transactions on Microwave
Theory and Techniques, Vol. 50, No. 7, 1761–1771, 2002.

5. Shea, J. D., P. Kosmas, S. C. Hagness, and B. D. Van Veen, “Three-dimensional microwave imaging
of realistic numerical breast phantoms via a multiple-frequency inverse scattering technique,”
Medical Physics, Vol. 37, No. 8, 4210–4226, 2010.

6. Lu, Y., J. Zhao, and G. Wang, “Edge-guided dual-modality image reconstruction,” IEEE Access,
Vol. 2, 1359–1363, 2014.

7. Caorsi, S., A. Massa, M. Pastorino, and M. Donelli, “Improved microwave imaging procedure for
nondestructive evaluations of two-dimensional structures,” IEEE Transactions on Antennas and
Propagation, Vol. 52, No. 6, 1386–1397, 2004.

8. Almeida, E. R., J. L. Porsani, I. Catapano, G. Gennarelli, and F. Soldovieri, “Microwave
tomography-enhanced GPR in forensic surveys: The case study of a tropical environment,” IEEE
Journal of Selected Topics in Applied Earth Observations and Remote Sensing, Vol. 9, No. 1, 115–
124, 2015.



Progress In Electromagnetics Research M, Vol. 102, 2021 103

9. Goodman, D., “Ground-penetrating radar simulation in engineering and archaeology,” Geophysics,
Vol. 59, No. 2, 224–232, 1994.

10. Frigui, H., L. Zhang, and P. D. Gader, “Context-dependent multisensor fusion and its application
to land mine detection,” IEEE Transactions on Geoscience and Remote Sensing, Vol. 48, No. 6,
2528–2543, 2010.

11. Gurbuz, T. U., B. Aslanyurek, E. P. Karabulut, and I. Akduman, “An efficient nonlinear imaging
approach for dielectric objects buried under a rough surface,” IEEE Transactions on Geoscience
and Remote Sensing, Vol. 52, No. 5, 3013–3022, 2013.

12. Chen, G., J. Pei, F. Yang, X. Y. Zhou, Z. Sun, and T. J. Cui, “Terahertz-wave imaging system
based on backward wave oscillator,” IEEE Transactions on Terahertz Science and Technology,
Vol. 2, No. 5, 504–512, 2012.

13. Jiang, Y., Y. Qin, H. Wang, B. Deng, K. Liu, and B. Cheng, “A side-lobe suppression method
based on coherence factor for terahertz array imaging,” IEEE Access, Vol. 6, 5584–5588, 2018.

14. Chew, W. C., Waves and Fields in Inhomogeneous Media, IEEE Press, 1995.
15. Bleistein, N. and J. K. Cohen, “Nonuniqueness in the inverse source problem in acoustics and

electromagnetics,” Journal of Mathematical Physics, Vol. 18, No. 2, 194–201, 1977.
16. Devaney, A. and G. Sherman, “Nonuniqueness in inverse source and scattering problems,” IEEE

Transactions on Antennas and Propagation, Vol. 30, No. 5, 1034–1037, 1982.
17. Slaney, M., A. C. Kak, and L. E. Larsen, “Limitations of imaging with first-order diffraction

tomography,” IEEE Transactions on Microwave Theory and Techniques, Vol. 32, No. 8, 860–874,
1984.

18. Habashy, T. M. and A. Abubakar, “A general framework for constraint minimization for the
inversion of electromagnetic measurements,” Progress In Electromagnetics Research, Vol. 46, 265–
312, 2004.

19. Shah, P., U. K. Khankhoje, and M. Moghaddam, “Inverse scattering using a joint l1–l2 norm-based
regularization,” IEEE Transactions on Antennas and Propagation, Vol. 64, No. 4, 1373–1384, 2016.

20. De Zaeytijd, J., A. Franchois, and J.-M. Geffrin, “A new value picking regularization
strategyapplication to the 3-d electromagnetic inverse scattering problem,” IEEE Transactions
on Antennas and Propagation, Vol. 57, No. 4, 1133–1149, 2009.

21. Van Den Berg, P. M. and R. E. Kleinman, “A contrast source inversion method,” Inverse Problems,
Vol. 13, No. 6, 1607, 1997.

22. Chen, X., “Application of signal-subspace and optimization methods in reconstructing extended
scatterers,” Journal of the Optical Society of America A, Vol. 26, No. 4, 1022–1026, 2009.

23. Chen, X., “Subspace-based optimization method for solving inverse-scattering problems,” IEEE
Transactions on Geoscience and Remote Sensing, Vol. 48, No. 1, 42–49, 2009.

24. Wang, Y. and W. C. Chew, “An iterative solution of the two-dimensional electromagnetic inverse
scattering problem,” International Journal of Imaging Systems and Technology, Vol. 1, No. 1, 100–
108, 1989.

25. Donelli, M., D. Franceschini, A. Massa, M. Pastorino, and A. Zanetti, “Multi-resolution iterative
inversion of real inhomogeneous targets,” Inverse Problems, Vol. 21, No. 6, S51, 2005.

26. Kennedy, J., “Swarm intelligence,” Handbook of Nature-inspired and Innovative Computing, 187–
219, Springer, 2006.

27. Engelbrecht, A. P., Fundamentals of Computational Swarm Intelligence, John Wiley & Sons, Ltd.,
Hoboken, 2005.

28. Rocca, P. M. B., M. Donelli, D. Franceschini, and A. Massa, “Evolutionary optimization as applied
to inverse scattering problems,” Inverse Problems, Vol. 25, No. 12, 123003, 2009.

29. Rocca, P., G. Oliveri, and A. Massa, “Differential evolution as applied to electromagnetics,” IEEE
Antennas and Propagation Magazine, Vol. 53, No. 1, 38–49, 2011.

30. Salucci, M., L. Poli, N. Anselmi, and A. Massa, “Multifrequency particle swarm optimization for
enhanced multiresolution GPR microwave imaging,” IEEE Transactions on Geoscience and Remote
Sensing, Vol. 55, No. 3, 1305–1317, 2016.



104 Yang, Zhang, and Tong

31. Donelli, M. and A. Massa, “Computational approach based on a particle swarm optimizer for
microwave imaging of two-dimensional dielectric scatterers,” IEEE Transactions on Microwave
Theory and Techniques, Vol. 53, No. 5, 1761–1776, 2005.

32. Caorsi, S., M. Donelli, A. Lommi, and A. Massa, “Location and imaging of two-dimensional
scatterers by using a particle swarm algorithm,” Journal of Electromagnetic Waves and
Applications, Vol. 18, No. 4, 481–494, 2004.

33. Yang, X.-S. and A. H. Gandomi, “Bat algorithm: A novel approach for global engineering
optimization,” Engineering Computations, Vol. 29, No. 5, 464–483, 2012.
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