Vol. 170
Latest Volume
All Volumes
PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2021-02-05
A Fine Scale Partially Coherent Patch Model Including Topographical Effects for GNSS-R DDM Simulations
By
Progress In Electromagnetics Research, Vol. 170, 97-128, 2021
Abstract
In this paper, we propose a fine scale partially coherent patch model (FPCP) for GNSS-R land applications for soil moisture retrieval. The land surface is divided into coherent planar patches on which microwave roughness is superimposed. The scattered waves of the coherent patch are decomposed into the coherent specular reflection and diffuse incoherent scattering. A fine scale of 2 meter patch size is chosen for the coherent patch to be applicable to complex terrain with large varieties of topographical elevations and with small to large topographical slopes. The summation of scattered fields over patches is carried out using physical optics. The phase term of the scattered wave of each patch is kept so that correlation scattering effects among patches are accounted for. Results are illustrated for power ratio for areas near the specular point and areas far away from the specular point. Comparisons are made with the radiative transfer geometric optics model. DDM simulations are performed with good agreement with CYGNSS data.
Citation
Haokui Xu, Jiyue Zhu, Leung Tsang, and Seung Bum Kim, "A Fine Scale Partially Coherent Patch Model Including Topographical Effects for GNSS-R DDM Simulations," Progress In Electromagnetics Research, Vol. 170, 97-128, 2021.
doi:10.2528/PIER20121201
References

1. Unwin, M., P. Jales, J. Tye, C. Gommenginger, G. Foti, and J. Rosello, "Spaceborne GNSS-reflectometry on TechDemoSat-1: Early mission operations and exploration," IEEE JASTARS, Vol. 9, No. 10, 4525-4539, Oct. 2016.

2. Ruf, C., et al., "CYGNSS: Enabling the future of hurricane prediction," IEEE Geosci. Remote Sens. Mag., Vol. 1, No. 2, 52-67, 2013.
doi:10.1109/MGRS.2013.2260911

3. Clarizia, M. P. and C. S. Ruf, "Wind speed retrieval algorithm for the Cyclone Global Navigation Satellite System (CYGNSS) mission," IEEE Transactions on Geoscience and Remote Sensing, Vol. 54, No. 8, 4419-4432, 2016.
doi:10.1109/TGRS.2016.2541343

4. Li, W., E. Cardellach, F. Fabra, A. Rius, S. Ribo, and M. Martin-Neira, "First spaceborne phase altimetry over sea ice using TechDemosat-1 GNSS-R signals," Geophysical Research Letters, Vol. 44, 8369-8376, 2017.
doi:10.1002/2017GL074513

5. Nghiem, S. V., C. Zfuffada, R. Shah, C. Chew, et al. "Wetland monitoring with Global Navigation Satellite System reflectometry," Earth and Space Science, Vol. 4, No. 1, 16-39, 2017.
doi:10.1002/2016EA000194

6. Kim, H. and V. Lakshmi, "Use of Cyclone Global Navigation Satellite System (CyGNSS) observations for estimation of soil moisture," Geophysical Research Letters, Vol. 45, No. 16, 8272-8282, Aug. 2018.
doi:10.1029/2018GL078923

7. Chew, C. C. and E. E. Small, "Soil moisture sensing using spaceborne GNSS reflections: Comparison of CYGNSS reflectivity to SMAP soil moisture," Geophysical Research Letters, Vol. 45, 4049-4057, 2018.
doi:10.1029/2018GL077905

8. Clarizia, M. P., N. Pierdicca, F. Costantini, and N. Floury, "Analysis of CYGNSS data for soil moisture retrieval," IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., Vol. 12, No. 7, 2227-2235, Jul. 2019.
doi:10.1109/JSTARS.2019.2895510

9. Beckmann, P. and A. Spizzichino, The Scattering of Electromagnetic Waves from Rough Surfaces, Macmillan, 1963.

10. Gu, W., H. Xu, and L. Tsang, "A numerical Kirchhoff simulator for GNSS land applications," Progress In Electromagnetics Research, Vol. 164, 119-133, 2019.
doi:10.2528/PIER18121803

11. Bertoni, H., Radio Propagation for Modern Wireless Systems, Prentice Hall, 1999.

12. Tsang, L., J. Kong, and K. Ding, Scattering of Electromagnetic Waves, Vol. 1: Theory and Applications, Wieley Interscience, 2000.
doi:10.1002/0471224286

13. Tsang, L., J. Kong, and K. Ding, Scattering of Electromagnetic Waves, Vol. 3: Advanced Topics, Wieley Interscience, 2000.

14. Al-Khaldi, M. M., J. T. Johnson, A. J. O’Brien, A. Balenzano, and F. Mattia, "Time series retrieval of soil moisture using CYGNSS," IEEE Transcations on Geoscience and Remote Sensing, Vol. 57, No. 7, Jul. 2019.

15. Zavorotny, V. and A. Voronovich, "Scattering of GPS signals form the ocean with wind remote sensing application," IEEE Transactions on Geoscience and Remote Sensing, Vol. 38, No. 2, 951-964, Mar. 2000.
doi:10.1109/36.841977

16. Campbell, J. D., A. Melebari, and M. Moghaddam, "Modeling the effects of topography on delay-doppler maps," IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, Vol. 13, 1740-1751, 2020.
doi:10.1109/JSTARS.2020.2981570

17. Campbell, J. D., A. Melebari, and M. Moghaddam, "Land forward model matchups with CYGNSS observations in the presence of topography," CYGNSS Science Team Meeting, Ann Arbor, Jun. 2019.

18. Dente, L., L. Guerriero, D. Comite, and N. Pierdicca, "Space-borne GNSS-R signal over a complex topography: Modeling and validation," IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, Vol. 13, 1218-1233, 2020.
doi:10.1109/JSTARS.2020.2975187

19. Zhu, J.-Y., L. Tsang, and H. Xu, "A physical patch model for GNSS-R land applications," Progress In Electromagnetic Research, Vol. 165, 93-105, 2019.
doi:10.2528/PIER19031003

20. Al-Khaldi, M. M., J. T. Johnson, S. Gleason, E. Loria, A. J. O’Brien, and Y. Yi, "An algorithm for detecting coherence in cyclone global navigation satellite system mission level-1 delay-doppler maps," IEEE Transactions on Geoscience and Remote Sensing, 1-10, 2020, Early Access.
doi:10.1109/TGRS.2020.3009784

21. Bringer, A., C. Toth, and J. T. Johnson, "Land Cal/Val activities: LIDAR campaign update," CYGNSS Science Team Meeting, Ann Arbor, Jun. 2019.

22. Oh, Y., K. Sarabandi, and F. T. Ulaby, "An empirical model and an inversion technique for radar scattering from bare soil surfaces," IEEE Transactions on Geoscience and Remote Sensing, Vol. 30, No. 2, 370-381, Mar. 1992.
doi:10.1109/36.134086

23. Huang, S., L. Tsang, E. G. Njoku, and K. S. Chan, "Backscattering coefficients, coherent reflectivities, and emissivities of randomly rough soil surfaces at L-band for SMAP applications based on numerical solutions of Maxwell Equations in three-dimensional simulations," IEEE Transactions on Geoscience and Remote Sensing, Vol. 48, No. 6, 2557-2568, Jun. 2010.
doi:10.1109/TGRS.2010.2040748

24. Entekhabi, D., E. G. Njoku, P. E. O. Neill, K. H. Kellogg, W. T. Crow, W. N. Edelstein, et al. "The Soil Moisture Active Passive (SMAP) mission," Proceedings of the IEEE, Vol. 98, No. 5, 704-716, 2010.
doi:10.1109/JPROC.2010.2043918

25. Huang, H., S.-B. Kim, L. Tsang, X. Xu, T.-H. Liao, T. J. Jackson, and S. Yueh, "Coherent model of L-band radar scattering by soybean plants: Model development, validation and retrieval," IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., Vol. 9, No. 1, 272-284, Jan. 2015.
doi:10.1109/JSTARS.2015.2469717

26. Huang, H., T.-H. Liao, L. Tsang, E. G. Njoku, A. Colliander, T. Jackson, M. S. Brugin, and S. Yueh, "Modelling and validation of combined active and passive microwave remote sensing of agricultural vegetation at L-band," Progress In Electromagnetics Research B, Vol. 78, 91-124, 2017.
doi:10.2528/PIERB17060303

27. Chen, K., L. Tsang, K. Chen, T. H. Liao, and J. Lee, "Polarimetric simulations of SAR at L-band over bare soil using scattering matrices of random rough surfaces from numerical three-dimensional solutions of Maxwell equations," IEEE Transactions on Geoscience and Remote Sensing, Vol. 52, No. 11, 7048-7058, Nov. 2014.
doi:10.1109/TGRS.2014.2306922

28. Liao, T.-H., L. Tsang, S. Huang, N. Niamsuwan, S. Jaruwatanadilok, S.-B. Kim, H. Ren, and K.-L. Chen, "Copolarized and cross polarized backscattering from random rough soil surfaces from L-band to Ku-band using numerical solutions of Maxwell’s equations with near-field precondition," IEEE Trans. Geosci. Rem. Sens., Vol. 54, No. 2, 651-662, Feb. 2016.
doi:10.1109/TGRS.2015.2451671

29. Kim, S.-B., J. J. Van Zyl, J. T. Johnson, M. Moghaddam, L. Tsang, A. Colliander, et al. "Surface soil moisture retrieval using the L-band synthetic aperture radar onboard the soil moisture active-passive satellite and evaluation at core validation sites," IEEE Transactions on Geoscience and Remote Sensing, Vol. 55, 1897-1914, 2017.
doi:10.1109/TGRS.2016.2631126

30. Duren, R., Ed. Wong, B. Breckenridge, S. Shaffer, C. Duncan, E. Tubbs, and P. Salomon, "Metrology, attitude, and orbit determination for spaceborne interferometric synthetic aperture radar," SPIE AeroSense Conference on Acquisition, Tracking and Pointing, Apr. 1998.