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A Fine Scale Partially Coherent Patch Model including
Topographical Effects for GNSS-R DDM Simulations

Haokui Xu1, Jiyue Zhu1, Leung Tsang1, *, and Seung Bum Kim2

Abstract—In this paper, we propose a fine scale partially coherent patch model (FPCP) for GNSS-R
land applications for soil moisture retrieval. The land surface is divided into coherent planar patches on
which microwave roughness is superimposed. The scattered waves of the coherent patch are decomposed
into the coherent specular reflection and diffuse incoherent scattering. A fine scale of 2 meter patch size
is chosen for the coherent patch to be applicable to complex terrain with large varieties of topographical
elevations and with small to large topographical slopes. The summation of scattered fields over patches
is carried out using physical optics. The phase term of the scattered wave of each patch is kept so
that correlation scattering effects among patches are accounted for. Results are illustrated for power
ratio for areas near the specular point and areas far away from the specular point. Comparisons are
made with the radiative transfer geometric optics model. DDM simulations are performed with good
agreement with CYGNSS data.

1. INTRODUCTION

The Global Navigation Satellite System Reflectometry (GNSS-R) is a new approach for the remote
sensing of earth surface. Different from the conventional radar sensors, the GNSS-R utilizes the existing
GNSS (e.g., GPS, GLONASS) satellites on-orbit as transmitters and only launches receivers. The
operating GNSS-R missions include the Techdemosat-1 (TDS-1) [1] launched by ESA in 2014 and the
Cyclone Global Navigation Satellite System (CYGNSS) [2] launched in 2016 by NASA. The GNSS-R
data are collected in the form of Delay Doppler Maps (DDMs), which have been applied to the retrieval of
ocean wind speed [3], sea ice thickness [4], and monitoring the wetland changes [5]. Recently, researches
have also shown the potential of soil moisture retrieval by the GNSS-R data [6–8]. Unlike the existing
soil moisture products, the short revisit time of CYGNSS enables a nearly real time soil moisture
monitoring, which would be important for applications in disasters like landslides. Benefiting from
near-specular scattering, the received power is much larger than that of radar backscattering. This
provides the possibility of overcoming forests attenuation effects in the remote sensing of soil moisture
in the forested areas.

In recent years, to leverage the soil moisture retrieval based on GNSS-R data, there has been
significant research in the physical modelling of the scattering from land surface in GNSS-R bistatic
configuration. The traditional models are that of coherent model and incoherent model. Based on the
positions of the transmitter and receiver, there are the specular point and Fresnel zones [9]. For the
case of CYGNSS, the first Fresnel zone is about 500 meters around the specular point. The coherent
model assumes that the terrain is flat, and the received electric field is derived readily such as by using
image theorem and the method of stationary phase [10]. An alternative explanation is based on the
Fresnel zones with alternate phases with convergence achieved as the sizes of the Fresnel zone decrease
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with distances. A centimeter scale microwave roughness with rms height h is also added to describe the
attenuation of the coherent wave [11]. The attenuation factor is exp(−4k2h2 cos2(θi)) where θi is the
incident angle, and k is the wavenumber which is equal to 33m−1 at the CYGNSS frequency. In the
work by Chew and Small [7], the coherent model was used to characterize the land surface scattering for
the retrieval of soil moisture. The coherent model is applicable to water body and possibly to wetlands,
but the power ratio of received power to transmitted power tends to be many decibels larger than the
CYGNSS land data.

The incoherent model is based on the assumption that because of the topological large elevation
changes in land surfaces, the received signal is incoherent. Using the concept of incoherent addition
in classical radiative transfer theory [12], the intensity of scattered field of land surfaces is obtained
by summing the intensities of the intensities from patches (or facets). In addition, the geometric
optics approximation [13] is used which assumes that the wavelength, which is 0.19 m at the CYGNSS
frequency, is much smaller than the topographical vertical and horizontal distance scales. The scattered
intensity is proportional to the probability density function of slopes [13]. The physical interpretation
is that the orientation of the patch specularly reflects the incident direction from the transmitter into
the direction of the receiver. Let the probability density function be ppdf (p, q) where p and q are
the slopes in the horizontal x and y directions, respectively. The choice of pdf is Gaussian so that
ppdf (p, q) = exp(−(p2 + q2)/(2s2))/(2πs2) where s is the rms slope, and a small number is usually
used. In the incoherent model ppdf (0, 0) = 1/(2πs2) is used which means that the scattered intensities
come from patches that are horizontal with zero slopes. This assumes that the incident angle of the
transmitter θi is equal to the scattered angle of the receiver (θs). The total power is the incoherent sum
from each patch. The model has been used by [14] for the remote sensing of soil moisture. The incoherent
mode does not consider the contribution from patches with topographical slopes. The geometric optics
approximation depends on the choice of the pdf of the slopes. Two other geometric optics have been
developed in [15–17], which have included the effects of topography slope and observation angle change.

In the work of [15], ppdf (p, q) = ppdf (−kdx/kdz ,−kdy/kdz), where kd = ki − ks, ki and ks are
respectively the incident wave vector from the transmitter on the patch and the scattered wave vector
from the patch to the receiver. This modification takes into account that the incident angles θi and
θs will be different when the patch is far away, such as 10 km, from the specular point, so that the
orientation patch needs to be tilted to specular reflect the incident wave into the receiver direction.
In applying the model to ocean surfaces, the pdf is constructed from the ocean spectrum such as the
Durden-Vesecky spectrum [12]. Arguments are made such that part of the ocean spectrum is used to
calculate the pdf of the slopes distribution. The model takes the surface profile fluctuations with ocean
spectral wavenumber less than 11 m−1 into account. In Campbell’s mode [16, 17], the argument is made
that a residue slope (a surface variation scale in between the microwave and topographical scale) was
used for the pdf. The factor ppdf (−kdx/kdz−p,−kdy/kdz−q) is used where p and q are the x and y slopes
of the patch, respectively. The parameter s = 0.75◦ is used in the slopes pdf of Gaussian distributions.

Other models include Laura’s model [18] which includes both the coherent and incoherent
scattering. Laura’s model divided the land surface into 300 meter patches. For each patch, the coherent
and incoherent scattering were computed [18]. The coherent component is calculated based on the
Kirchhoff approximation. Because the patch is large that is beyond the far field limit, a second order
Taylor expansion is made in the phase factor. This is the Fresnel approximation of the phase rather
than the Franhoeffer linear expansion of the phase. The incoherent intensity is evaluated with the
AIEM model. Both topographical slopes and microwave roughness effects were included. In addition,
the attenuation factor exp(−4k2h2 cos2(θi)) is used to attenuate the reflection of the patches.

Recently, we have used the wave approach of physical optics by carrying out integration of the
Kirchhoff integral. The approach takes into account the finite wavelength and the wave nature of
scattering with amplitude and phase as the fine scale topography is comparable to wavelengths. The
scattered field is computed by summation under the Kirchhoff integral. The scattered intensity is
obtained by taking absolute value of the summed scattered field. In [10], a brute force numerical
Kirchhoff simulator that discretized the land surfaces into 2 cm by 2 cm patches is used. Because a large
number of patches is used in a 10 km by 10 km area, parallel computation is used for the integration.
Simulation results by numerical Kirchhoff show that the topographical elevation destroys the Fresnel
zone pattern as on a planar surface. In [19], the land surface is divided into 30 m by 30 m patches. The
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coherent scattered wave and incoherent scattered intensity were computed for each patch. The total
scattered power is obtained by coherent summation of the coherent waves and incoherent summation
of the incoherent intensities over the patches. The two models ignore the variations within 30 meters
that will overestimate the coherent effects. Patches are considered as horizontal without topographical
slopes. These 2 factors make the model prediction 20 dB greater than data measurements.

In recognizing the effects of fine scale topography change, we propose the fine-scale partially
coherent approach for GNSS-R land reflections. In random media scattering, scattering is coherent
in small domain. The scattering becomes partially coherent in a domain of intermediate size and
becomes incoherent in a large domain. The dividing lines between small and intermediate and between
intermediate and large are dependent on problem. The coherence also depends on observation angles.
Backscattering at oblique incidence is more incoherent, and the scattering in the forward direction is
more coherent. The angular dividing line is also problem dependent. In proposing the partially coherent
approach in this paper, we use the fine-scale patch of size of L = 2 m. We carried out summation of
complex fields over N patches. For N = 1, the concept of partial coherence is that the scattered field
is coherent. For 2 ≤ N ≤ Nlarge, the scattered field is partially coherent. For N > Nlarge, the scattered
field is incoherent. The dividing line of Nlarge can be estimated numerically from the phase distributions
of the Nlarge patches.

In surface height characterizations, we consider the surface height as composed of a summation of
3 kinds of roughness/topography.

z = f1(x, y) + f2(x, y) + f3(x, y)

where f1(x, y) is the microwave roughness with rms height of 5 cm or less. In the CYGNSS project,
extensive measurements are taken to measure the rms heights and correlation lengths of the microwave
roughness at supersites. The topography f3(x, y) is the coarse scale topography as given by Digital
Elevation Model (DEM). It is termed coarse because the DEM is of horizontal resolution of 30 m. A linear
interpolation is used to obtain f3(x, y) for continuous variables so that f3(x, y) corresponds to tilted
planar patches. f2(x, y) is labeled as “fine scale topography” that is in-between the coarse topography
and the microwave roughness. The fine scale topography f2(x, y) will have rms heights of 5 cm and
above and horizontal correlations of 0.5 to 10 meters. As shown in this paper, the fine scale topography
will significantly influence the GNSS-R land reflections. The proposed partially coherent approach
accounts for f1(x, y) and f2(x, y) as they are fine-scale, and coherent effects need to be included. In this
paper, f2(x, y) is characterized by uncertainties. Recently, Lidar measurements have been taken [21],
and ICESAT2 measurements are also available. For future works, such fine-scale measurements will be
used to infer f2(x, y).

Because the fine topography is not much larger than the CYGNSS wavelength, in this paper, we
propose a partially coherent fine scale patch model consisting of discretizing the land surface into small
patches such as 2m by 2 m. The 2m by 2 m patch can take into account the fine-scale topography.
The model is labeled as “Fine-scale partially coherent patch model”. We treat the 2 m by 2 m patch
as a coherent planar patch on which microwave roughness is superimposed. Salient features of the
models are: (i) By using rough surface scattering theory, the scattered wave of the coherent patch
is decomposed into the coherent specular reflection and diffuse incoherent scattering. (ii) The diffuse
incoherent scattering is derived from the microwave roughness f1(x, y). (iii) Physical optics are used for
the Kirchhoff integral as the fine scale topography is not much larger than the wavelengths. (iv) Since
the patch is not large, the phase of the scattered wave by the patch is retained making the model a
partially coherent model. (v) It is shown in the limit of increasing the patch size from 2 meters such as
to 10 meters, and ignoring the phase term, the partially coherent model reduces to that of the geometric
optics model and (vi) Coherent and incoherent waves of the microwave roughness can be calculated by
using NMM3D (Numerical Maxwell model of 3 dimensional simulations).

The proposed model is a fine scale partially coherent patch model (FPCP). The total power is
obtained by the sum of the absolute square of SWC and SWICI. The SWC is the coherent summation
of the weighted coherent fields of the patches, and the SWICI is incoherent summation of the weighted
incoherent diffuse intensities. It is important to note that although the coherent field of each patch is
coherent, the summation, SWC, can be partially coherent or incoherent because of the random phases
among the coherent fields from the patches. Thus the SWC concept is consistent with the classification
of coherence of DDM.
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Results are illustrated for power ratio for areas near the specular point and areas far away from
the specular point. By taking a large patch, the results reduce to that of the RT-GO (radiative transfer
geometric optics model). Comparisons are made between the fine scale partial coherent patch model
and the RT-GO model.

The paper is organized as follows. In Section 2, the coherent and incoherent scattered waves are
derived from a tilted patch using the physical optics approximation of the Kirchhoff integral. Section 3
illustrates the formulation of SWC and SWICI. In Section 4, we show the implementation of SWC and
SWICI with the solution of Numerical Maxwell Model 3D (NMM3D) for the microwave roughness. In
Section 5, we show the radiative transfer approach. In Section 6, the numerical results are presented.
Recently, the topic of interest is the simulation of DDMs that covers an area of 50 km radius. Based
on the DDM data, a classification algorithm [20] has been proposed to determine whether the DDM
is coherent or incoherent. In this section, we simulate DDMs with the partially coherent model which
are compared with CYGNSS data. Then in Section 6 comes with conclusions. In Appendix A, the
incoherent diffused intensity of a tilted patch based on NMM3D is given. In Appendix B, we take a
special case of the partial coherent model by taking large patches and ignoring the phase term to derive
the RT-GO model.

2. KIRCHHOFF MODEL FOR A SINGLE TILTED COHERENT PLANAR PATCH
WITH ROUGHNESS

The geometrical configuration of GNSS-R is as shown in Figure 1. In the patch model of terrain, we
consider a land surface with multiple elevations and slopes as shown in Figure 2. The specular point
is taken to be at the origin (0, 0, 0). As in [19], we divide the land surface into N patches, labeled as
n = 1, 2, 3 . . . N with each patch having a single slope. Because of topography, each patch is tilted from
the horizontal plane. Microwave roughness is superimposed on the patch (Figure 2).

Figure 1. GNSS-R geometry. Specular point at (0, 0, 0).

We calculate the scattering of the patch that consists of the coherent fields and incoherent diffuse
intensity. The assumption is that the patch is “coherent” meaning that a decomposition into coherent
fields and diffuse incoherent fields in rough surface scattering is applicable. The coherent field is complex
and has a definite phase. The diffuse incoherent field has random phase uniformly distributed between
0 and 2π. Thus we compute only the intensity of the diffuse incoherent field. Such a patch will be
labeled as a “coherent patch”. Let the horizontal projection of each patch be a square of L × L. The
coherent patch size chosen in this paper is L = 2 m. Let the center of the patch be at (xn, yn, zn),
the orientation angle be (βn, αn), and the microwave roughness be of hn rms height and correlation
length ln. By microwave roughness we mean the parameters that center into the calculations of rough
surface scattering of the coherent patch. The location (xn, yn, zn) and orientation angle (βn, αn) are
derived from DEM information. The tilted patch rough surface scattering model is an extension of
the horizontal patch model in [12] and [13]. In the following, we suppress, unless necessary, the “n”
subscript as the equations are understood to be developed for a single coherent patch.
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Figure 2. Coherent reelection and diffuse scattering of tilted planar coherent patch with microwave
roughness z′′ = f1(x′′, y′′). Patch center (xn, yn, zn). Fine-scale patch size L × L. Normal to patch
n̂ = ẑ′′; Angles θin and θsn are the directions to transmitter and receiver respectively.

2.1. Coordinates and Axes of Tilted Plane

Let the normal vector to the patch be:

n̂ = sinβ cos αx̂ + sin β sin αŷ + cos βẑ

where 0 ≤ α ≤ π
2 ; 0 ≤ β ≤ 2π. The normal is also expressed by p and q, the slopes in x and y directions

respectively

n̂ =
1√

1 + p2 + q2
(−px̂ − qŷ + ẑ).

The slopes p and q are in terms of α and β:

p = − tan β cos α (1)
q = − tan β sin α (2)

The microwave roughness is perpendicular to the patch. We use (x̂′′, ŷ′′, ẑ′′) as the tilted axes where
ẑ′′ coincides with the normal ẑ′′ = n̂. Since the two axes, x̂′′ and ŷ′′, are perpendicular to ẑ′′, and
the roughness is assumed to be azimuthal symmetric, we use Eulerian angles of rotations and choose
γ = −α following the Euler angle notations of [12].

The local coordinates are (x′, y′, z′)

x′ = x − xn (3)
y′ = y − yn (4)
z′ = z − zn (5)

The 3D transformations of coordinates and unit vectors are summarized below. In the following, (x̂, ŷ, ẑ)
are labeled as “global” axes and (x̂′′, ŷ′′, ẑ′′) labeled as “local axes”. In the local global axes, the unit
vectors are:

x̂′ = x̂ (6)
ŷ′ = ŷ (7)
ẑ′ = ẑ (8)

The local coordinates are:

x′′ = (cos β cos2 α + sin2 α)x′ − sinα cos α(1 − cos β)y′ + (− cos α sin β)z′ (9)
y′′ = (− sin α cos α(1 − cos β))x′ + (cos β sin2 α + cos2 α)y′ + (− sin α sin β)z′ (10)
z′′ = (sin β cos α)x′ + (sin β sin α)y′ + cos βz′ (11)
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and the local unit vectors are:

x̂′′ = (cos β cos2 α + sin2 α)x̂ − sin α cos α(1 − cos β)ŷ + (− cos α sin β)ẑ (12)

ŷ′′ = (− sin α cos α(1 − cos β))x̂ + (cos β sin2 α + cos2 α)ŷ + (− sin α sinβ)ẑ (13)

ẑ′′ = sinβ cos αx̂ + sin β sin αŷ + cos βẑ (14)

With this choice of γ, the above transformations reduce to familiar forms for small slope which
corresponds to small β.

On the surface of the planar patch, there are 2 degrees of freedom as the coordinate z′′ = 0.
The 2D transformations of the coordinates are then:

x′ = (cos β cos2 α + sin2 α)x′′ − sin α cos α(1 − cos β)y′′ (15)
y′ = − sinα cos α(1 − cos β)x′′ + (cos β sin2 α + cos2 α)y′′ (16)

We define transformation coefficients:

axx = secβ cos2 α + sin2 α (17)

axy = ayx = cos α sinα(secβ − 1) (18)

ayy = secβ sin2 α + cos2 α (19)

Then the inverse transformation is

x′′ = axxx
′ + axyy

′ (20)

y′′ = ayxx′ + ayyy
′ (21)

In this transformation, the Jacobian is not unity as dx′′dy′′ = secβdx′dy′. The sec β accounts for
the area of the planar patch as L2 sec β that is larger than the horizontal projection of L2. For small
slope β, then dx′′dy′′ = dx′dy′.

2.2. Coherent Scattered Field and Diffuse Incoherent Intensity of the Coherent Patch

Let the GNSS-R transmitter be located at:

Tx = (xt, 0, ht)

and the receiver be located at
Rx = (xr, 0, hr).

The distance
d = xr − xt

is the horizontal separation between transmitter and receiver. The specular point is located at (0, 0, 0).
Thus:

xr + xs = d (22)

xs = −xt =
dht

hr + ht
(23)

xr =
dhr

hr + ht
(24)

The distances between the patch center and the transmitter and receiver are respectively Rnt and Rnr:

Rnt =
√

(xn − xt)2 + y2
n + (zn − ht)2 (25)

Rnr =
√

(xn − xt)2 + y2
n + (zn − hr)2 (26)

In the partially coherent patch model, we keep track of the patch phase term: exp(ik(Rnt + Rnr)).
The patch size L of 2m is small and thus in the far field of both the transmitter and the receiver.

This means that both the incident waves and scattered waves are plane waves at the patch. Aside from
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the phase term, the distances in the amplitudes of the Green’s function are obtained by replacing Rnt

and Rnr respectively by:

Rt =
√

(x2
t + h2

t ) (27)

Rr =
√

(x2
r + h2

r) (28)
The electric field of the incident plane wave on the patch is Ei(r′′) = êinE0 exp(ikRnt) exp(ikin · r′′)
where E0 =

√
2η PtGt

4πR2
t
; η is the wave impedance; Pt and Gt are respectively the power transmitted and

the gain of the transmitting antenna. êin is the unit polarization vector which will be chosen to be
RHCP. Note that we use r′′ system of the phase term in the incident plane wave. The wave vector of
the incident plane wave is:

k̂in = kinxx̂ + kinyŷ − kinz ẑ

where

kinx =
k(xn − xt)

Rnt
(29)

kiny =
kyn

Rnt
(30)

kinz =
k(ht − zn)

Rnt
(31)

The incident angle θin on the patch is:

cos(θin) =
kinz

k
.

The incident horizontal and vertical polarizations are:

ĥin =
ẑ × k̂in

|ẑ × k̂in|
(32)

v̂in = ĥin × k̂in (33)
The incident wave is right hand circularly polarized so that

êin =
1√
2

(
v̂in + iĥin

)
.

The random rough surface is perpendicular to the planar patch. Thus we use (x′′, y′′, z′′) system to
describe the roughness. The microwave centimeter random roughness height function is:

z′′ = f1

(
x′′, y′′

)
where f1(x′′, y′′) is a Gaussian random process with rms height h and correlation length l. We shall use
exponential correlation functions as it is commonly adopted for land surfaces [22]. The scattered wave
is a plane wave with the wave vector

k̂sn = ksnxx̂ + ksnyŷ + ksnz ẑ (34)

ksnx =
k(xr − xn)

Rnr
(35)

ksny = − kyn

Rnr
(36)

ksnz =
k(hr − zn)

Rnr
(37)

The scattered angle θsn is cos(θsn) = ksnz
k . The horizontal and vertical polarization vectors for the

scattered wave are:

ĥsn =
ẑ × k̂sn

|ẑ × k̂sn|
=

−ksnyx̂ + ksnxŷ√
k2

snx + k2
sny

(38)

v̂sn = ĥsn × k̂sn (39)
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In the vicinity of the specular point, θsn is almost identical to θin. As the location of the patch moves
away from the first Fresnel zone, there are small changes in k̂sn direction because the height of the
receiver is much lower than that of the transmitter. The small changes in k̂sn can cause significant
changes in the phase term. The influence on the coherent specular reflection is significant. In using
Kirchhoff integral of Equation (2.1.42a) of page 72 of [13], we shall use the scattered field formulation
of:

Es =
∫

patch
dS′′

[
iωμG

(
r, r′′

) · n̂′′ × Hs

(
r′′
)

+ ∇× G
(
r, r′′

) · n̂′′ × Es

(
r′′
)]

(40)

where n̂′′ and n̂′′ × Es(r′′) are respectively the tangential scattered magnetic field and the tangential
scattered electric field respectively. In [13] the total field formulation was used. The surface integral of
the incident fields n̂ × H i(r′′) and n̂′′ × r′′ of an infinite rough surface is zero:∫ ∫

dS′′
[
iωμG

(
r, r′′

) · n̂′′ × H i

(
r′′
)

+ ∇× G
(
r, r′′

) · n̂′′ × Ei

(
r′′
)]

= 0 (41)

Thus for an infinite rough surface and if the solutions of Maxwell equations are exact, then the total
field formulation and the scattered field formulation are equivalent. However, for the case of finite rough
surface and non-exact solutions as inherent in Kirchhoff approximations, the results will be different.
The normal n̂′′ vector, taking into account of the microwave roughness, is perpendicular to the tangent
plane of the rough surface:

n̂′′ =
− df1

dx′′ x̂
′′ − df1

dy′′
ŷ′′ + ẑ′′√

1 +
(

df1

dx′′

)2

+
(

df1

dy′′

)2
.

Then making the tangent plane approximation in Kirchhoff approximation, and carrying out the vector
diffraction integral of Equation (30) with a similar derivation to pages 74–76 of [13], but in the (x′′, y′′, z′′)
coordinate system:

Esn = ik
1

4πRr
E0 exp (ik (Rrn + Rnt))

(
v̂snv̂sn + ĥsnĥsn

)
·
∫

patch
dx′′dy′′ exp

(
i
(
kin − ksn

) · r′′)F

(
df (x′′, y′′)

dx′′ ,
df (x′′, y′′)

dy′′
, α, β

)
where F (df(x′′)

dx′′ , df(x′′,y′′)
dy′′ , α, β) is in Eq. (2.1.55a) of [13] but with the unity term deleted because of the

scattered field formulation instead of total field formulation. The (α, β) in Eq. (2.1.55a) is replaced by
df1(x′′)

dx′′ and df1(x′′,y′′)
dy′′ , respectively. Then to carry out the integration analytically, we make approximation

of F as on pages 81–82 of [13], by setting df(x′′)
dx′′ and df(x′′,y′′)

dy′′ to be zero.

F

(
df (x′′)

dx′′ ,
df (x′′, y′′)

dy′′
, α, β

)
= F (0, 0, α, β)

Then as in [13]

F (0, 0, α, β) = [q̂inRh (θin)] (êin · q̂in)
(
n̂ · k̂in

)
+ Rv (θin) n̂ × q̂in (êin · p̂in)

]
(42)

+
[
k̂sn × (n̂ × q̂in) (êin · q̂in)Rh (θin) − Rv (θin) k̂sn × q̂in

(
n̂ · k̂in

)
(êin · p̂in)

]
(43)

in the above equation, the local incidence angle is θli where

cos(θin) = −n̂ · k̂in

also

q̂in =
k̂in × ẑ′′∣∣∣k̂in × ẑ′′

∣∣∣
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and
p̂in = q̂in × k̂in

The Fresnel reflection coefficients are given by:

Rh(θin) =
k cos θin −

√
k2

1 − k2 sin2 θin

k cos θin +
√

k2
1 − k2 sin2 θin

(44)

Rv(θin) =
ε1k cos θin − ε

√
k2

1 − k2 sin2 θin

ε1k cos θin + ε
√

k2
1 − k2 sin2 θin

(45)

where ε1 and k1 are the permittivity and wavenumber respectively below the rough surface. Then the
scattered field of the patch is

Esn =
ik

4πRr
E0

[
v̂sn

(
v̂sn · F (0, 0, α, β)

)
+ ĥsn

(
ĥsn · F (0, 0, α, β)

))]
exp (ik (Rnr + Rnt)) Ip

where Ip is the integral:

Ip =
∫

patch
dx′′dy′′ exp

(
ikdn · r′′) (46)

kdn = kin − ksn (47)
These analytical approximations are made in addition to the tangent plane approximation unlike

the numerical Kirchhoff approach [10]. Basically the microwave roughness is only retained in the phase
term with the rest of the integrand ignoring the microwave roughness.

On the rough surface
r′′ = x′′x̂′′ + y′′ŷ′′ + f

(
x′′, y′′

)
ẑ′′.

Since kdn is in (x̂, ŷ, ẑ) while r′′ is in (x̂′′, ŷ′′, ẑ′′), we let:

u = kdn · x̂′′ (48)
v = kdn · ŷ′′ (49)
w = kdn · ẑ′′ (50)

Then
Ip =

∫
patch

dx′′dy′′ exp
(
iux′′ + iv′′

)
exp

(
iwf

(
x′′, y′′

))
(51)

we decompose Ip into coherent and diffuse incoherent:
Ip = 〈Ip〉 + (Ip − 〈Ip〉)

2.3. Coherent Wave 〈Ip〉
Taking the average, we obtain:

〈Ip〉 = exp
(
−w2h2

2

)∫
patch

dx′′dy′′ exp
(
iux′′ + ivy′′

)
(52)

To perform the integral, we transform to (x′, y′) and using the Jacobian. Then we have:

〈Ip〉 = L2 exp
(
−w2h2

2

)
secβsinc

(
(uaxx + vayx)

L

2

)
sinc

(
(uaxy + vayy)

L

2

)
(53)

Note that the coherent field intensity is proportional to |〈Ip〉|2 which is proportional to L4. The coherent
scattered field is:〈

Esn

〉
=

ik

4πRr
E0 exp (ikRnr + ikRnt)

(
v̂sn

(
v̂sn · F (0, 0, α, β)

)
+ ĥsn

(
ĥsn · F (0, 0, α, β)

))
〈Ip〉 (54)

The distinct feature of the coherent field of the patch is that it contains the phase term exp(ikRnr +
ikRnt). The partially coherent patch model keeps the track of this phase term.
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2.4. Diffuse Incoherent 〈|Ip − 〈Ip〉|2〉
The diffuse incoherent intensity is [13]〈∣∣Esn − 〈Esn

〉∣∣2〉 =
k2

16π2R2
r

E2
0

(∣∣v̂sn · F (0, 0, α, β)
∣∣2 +

∣∣∣ĥsn · F (0, 0, α, β)
∣∣∣2)[〈|Ip − 〈Ip〉|2

〉]
(55)

The integral can be computed in a manner similar to pages 80–81 of [13]. Let the correlation function
C(ρ) be defined by: 〈

f
(
x′′

1, y
′′
1

)
f
(
x′′

2, y
′′
2

)〉
= h2C

(√
(x′′

1 − x′′
2)

2 + (y′′1 − y′′2)2
)

(56)

For the case of exponential correlation function:

C(ρ) = e−
ρ
l (57)

Then 〈
|Ip − 〈Ip〉|2

〉
= 2πL2secβI (58)

where
I = l2

∫ ∞

0
dx
[
exp

(−w2h2
(
1 − e−x

))− exp
(−w2h2

)]
J0

(√
u2 + v2lx

)
(59)

and J0 is the Bessel function of order 0. The integral I can be calculated numerically for any h and l.
For the case of small to moderate h, it is convenient to make Taylor expansions. Then we have:〈

|Ip − 〈Ip〉|2
〉

= 2πL2l2 sec β exp
(−w2h2

) ∞∑
m=1

(wh)2m

m!
m

(m2 + l2 (u2 + v2))
3
2

(60)

where exponential correlation function is assumed. Note that 〈|Ip−〈Ip〉|2〉 is proportional to L2l2 showing
that the magnitude of diffuse incoherent intensity depends significantly on the measured correlation
length l.

3. SWC AND SWICI

3.1. SWC: Summation for Coherent Fields

We sum the coherent field of N patches. The summation of coherent fields is labeled as SWC: summation
of weighted coherent field. The weighting is due to the property of the orientation angles of the patch
and the microwave rms height of each patch.

E
SWC
s =

N∑
n=1

〈
Esn

〉
=

N∑
n=1

ik

4πRr
E0

[
v̂sn

(
v̂sn · F (0, 0, αn, βn)

)
+ ĥsnĥsn · F (0, 0, αn, βn)

]
exp (ikRnr + ikRnt) 〈Ipn〉

where:

〈Ip〉 = L2 exp
(
−w2h2

2

)
sec βnsinc

(
(uaxx + vayx)n

L

2

)
sinc

(
(uaxy + vayy)n

L

2

)
(61)

The received power Pr is

Pr =
|Es|2
2η

Grλ
2

4π
(62)
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where Gr is the gain of the receiving antenna, and λ is the wavelength. Substituting in the expression
for E0, the power ratio for SWC:

PSWC
r

Pt
=

GrGt

64π2R2
rR

2
t

∣∣∣∣∣
N∑

n=1

exp (ik (Rnr + Rnt))
(
v̂sn

(
v̂sn · F (0, 0, αn, βn)

)
+ĥsn

(
ĥsn · F (0, 0, αn, βn)

))
〈Ipn〉

∣∣∣2 (63)

The power in SWC is a partially coherent model result.
(1) In the summation over n, there is a patch phase term exp(ik(Rnr + Rnt)) that accounts for the

phase dependence. The coherent fields of the patches are summed.
(2) The coherent field from each coherent patch is coherent, but the summation of coherent fields

of N patches can make the summed SWC field partially coherent or incoherent.
(3) In using L = 2 meter patches, the summation over a moderate number of patches is partially

coherent but can become incoherent as the number of patches further increases.
(4) In preserving the phase, the SWC model is also applicable to water body and wetlands.
(5) Note that 〈Ipn〉 has L2 factor so that the RHS of the equation for P SWC

r
Pt

is dimensionless.

3.2. SWICI: Summation of Diffuse Incoherent Intensity

For the incoherent diffuse intensity, we sum the intensity of each patch to obtain the SWICI.

PrSWCICI

Pt
=

GrGt

64π2R2
rR

2
t

N∑
n=1

(∣∣v̂sn · F (0, 0, αn, βn)
∣∣2 +

∣∣∣ĥsn · F (0, 0, αn, βn)
∣∣∣2)〈|Ip − 〈Ip〉|2

〉
n

(64)

3.3. Small Slope Approximation, β � 1, of SWC and SWICI

The SWC and SWICI formulas are applicable to general topographical slopes. The formulas simplify
considerably by making the small slope assumption on the topographical slopes. Most of the terrains
have Small slopes. Let β � 1, then

sin β = β; cos β = 1, sec β = 1 axx = 1; ayx = axy = 0; ayy = 1

We also make the approximation that kdnx and kdy are small because the incident angle is close to
the scattered angle. The terms kdnx and kdy can be set to zero except for those terms that are multiplied
by a large number such as the patch size, or they are divided by a small number such as topographical
slope. Then for small slopes,

u = kdnx + kdnzp

v = kdny + kdnzq

w = kdnz = −2k cos θi

w2
nh2

n

2
= 2k2h2 cos2 θi

The Fresnel coefficient dependent F (0, 0, αn, βn) can be approximated by(
v̂sn

(
v̂sn · F (0, 0, αn, βn)

)
+ ĥsn · F (0, 0, αn, βn) ĥsn

)
= (−2 cos θi)

[
v̂s (Rv (θi)) + iĥsRh (θi)

]
√

2
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where right hand circularized polarized incident wave is assumed. Then the SWC power ratio is
simplified to

PSWC
r

Pt
=

GrGt

64π2R2
rR

2
t

∣∣∣∣∣
N∑

n=1

L2eik(Rnr+Rnt)e−2k2h2
n cos2 θisinc

((
kdnx

kdnz
+ pn

)
kdnzL

2

)

sinc
((

kdny

kdnz
+ qn

)
kdnzL

2

)⎡⎣2 cos θi

[
v̂s (Rv (θi)) + iĥsRh (θi)

]
√

2

⎤⎦∣∣∣∣∣∣
2

(65)

As explained in the introduction, in proposing the partially coherent approach in this paper, we
use fine-scale patch size of L = 2 m. We carried out summation of complex fields over N patches. For
N = 1, the concept of partial coherence is that the scattered field is coherent. For 2 < N < Nlarge,
the scattered field is partially coherent. For N > Nlarge, the scattered field is incoherent. The dividing
line of Nlarge can be estimated numerically from the exp(ik(Rnr + Rnt)) factors that give the phase
distributions for the Nlarge patches.

The sinc function is equal to the maximum of unity when the argument is equal to zero. Thus the
peaks are at (kdnx

kdnz
+ pn) and (kdny

kdnz
+ qn) both equal to zero. These correspond to the case when the

slopes of the patch specularly reflect to the receiver. Near the specular points kdnx
kdnz

and kdny

kdnz
are equal

to zero, so that pn and qn need to be zero to specularly reflect to the receiver. Far away from specular
point, kdnx

kdnz
and kdny

kdnz
are not equal to zero, then the orientation of the patch needs to be favorably tilted

to reflect to the receiver.
For the fine-scale partially coherent model, the patch size is chosen to be L = 2 m. The expressions

derived apply to all patch sizes. We consider the special case of the RT (radiative transfer). The
RT model is by taking the absolute value squared of the term inside the summation and followed by
summation. This means that the phase term is discarded:

PSWC−RT
r

Pt
=

GrGt

64π2R2
rR

2
t

N∑
n=1

L4e−4k2h2
n cos2 θi4 cos2 θi |RCP (θi)|2

sinc2

((
kdnx

kdnz
+ pn

)
kdnzL

2

)
sinc2

((
kdny

kdnz
+ qn

)
kdnzL

2

)
(66)

In Appendix B, Geometric optics is applied by using large patches such as L = 10 m, 30 m. Combining
the two gives the RT-GO model.

The SWICI power ratio is simplified to

PSWICI
r

Pt
=

GrGt

64π2R2
rR

2
t

N∑
n=1

4 cos2 θi |RCP (θi)|2
[〈

|Ip|2
〉
− |〈Ip〉|2

]
(67)

where |RCP (θi)|2 = |Rv(θi)|2+|Rh(θi)|2
2 is the reflectivity of CP (circularly polarized) waves, and

〈|Ip|2〉 − |〈Ip〉|2 is simplified to〈
|Ip|2

〉
− |〈Ip〉|2

= 2πL2�2 exp
(−4k2h2 cos2 θi

) ∞∑
m=1

(
4k2h2 cos2 θi

)m
(m − 1)!

(
m2 + �2

(
(kdnx + kdnzp)2 + (kdny + kdnzq)

2
)) 3

2

4. NMM3D FOR A TILTED PLANAR PATCH WITH ROUGH SURFACE

The scattering by microwave roughness can be obtained by Numerical solutions of Maxwell equations
(NMM3D). We have extensively solved Maxwell equations using Numerical solutions of Maxwell
equations NMM3D [22, 23]. These solutions were performed at L band for the SMAP project [24–
26]. The rough surface is characterized by exponential correlation functions with rms height h and
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correlation length l. Monte Carlo simulations are performed. In Monte Carlo simulation, for each
realization of random rough surface, an incident tapered wave is incident on the rough surface with
vertical polarization and with horizontal polarization. The scattered fields for each realization are
calculated over 2π solid angle of the hemisphere. The computed data for each realization were stored.
Using such data, speckle statistics were calculated [27].

Using such computed data, the incoherent bistatic scattering coefficients are calculated by taking
averages over realizations followed by subtraction of the coherent field. The computed backscattering
coefficients are in good agreement with measurement data [25, 26, 28]. Because a tapered wave is used,
the coherent wave has an angular spreading in the specular direction. In the following, we describe how
these computed data are used to compute the power ratios of SWC and SWICI for a tilted planar patch
with random rough surface. The recorded simulations data are in terms of local incidence angle, local
scattered angle, and local h and v polarizations of the tilted patch.

For a planar patch with the normal vector n̂, the local incident angle θli obeys

cos θli = −k̂in · n̂
The local scattered angle θls obeys

cos θls = k̂sn · n̂
NMM3D table is based on the bistatic scattering coefficient

γχlκl
(θls, φls − φli; θli, 0)

where χl, κl are polarizations defined locally. Because of azimuthal symmetry of roughness, the
dependence of γχlκl

is on φls −φli. From the local incident and scattered direction of the patch k̂in and
k̂sn, we have

sin θli sin θls cos(φls − φli) = k̂in · k̂sn + cos θli cos θls

from which φls, φli can be obtained. For the tilted patch, the local perpendicular polarization is

ĥl
in =

n̂ × k̂in

|n̂ × k̂in|
and the local vertical polarization is

v̂l
in = ĥl

in × k̂in

The local scattered horizontal polarization vector is:

ĥl
sn =

n̂ × k̂sn

|n̂ × k̂sn|
The local scattered vertical polarization vector is:

v̂l
sn = ĥl

sn × k̂sn

We express the incident unit amplitude RHCP êin waves in terms of local polarization

Ei = Ei
viv̂

l
in + Ei

hiĥ
l
in

where
Evi = v̂l

in · êin

and
Ehi = ĥl

in · êin

The incident polarization can be expressed in terms of 4 stokes parameters:⎡⎢⎢⎢⎢⎢⎣

∣∣Ei
v�

∣∣2∣∣∣Ei
h�

∣∣∣2
Ei

v�
Ei∗

h�

Ei∗
v�

Ei
h�

⎤⎥⎥⎥⎥⎥⎦
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The scattered wave is
Es = Es

v�
v̂(�)
sn + Es

h�
ĥ(�)

sn

The 4 Stokes parameters of the scattered wave are⎡⎢⎢⎢⎢⎢⎢⎣

∣∣Es
v�

∣∣2∣∣∣Es
h�

∣∣∣2
Es

v�
Es∗

h�

Es∗
v�

Es
h�

⎤⎥⎥⎥⎥⎥⎥⎦
4.1. NMM3D Diffused Scattering

The diffused components of the scattering of NMM3D can be obtained from the Γ
NMM3D,dif

(θ�s, φ�s −
φ�i, θ�i,0) matrix⎡⎢⎢⎢⎢⎢⎢⎣

∣∣Es
v�

∣∣2∣∣∣Es
h�

∣∣∣2
Es

v�
Es∗

h�

Es∗
v�

Es
h�

⎤⎥⎥⎥⎥⎥⎥⎦
dif

=
1

R2
r

AP cos θ�i

4π
Γ

NMM3D,dif
(θ�s, φ�s − φ�i, θ�i,0)

⎡⎢⎢⎢⎢⎢⎢⎣

∣∣Ei
v�

∣∣2∣∣∣Ei
h�

∣∣∣2
Ei

v�
Ei∗

h�

Ei∗
v�

Ei
h�

⎤⎥⎥⎥⎥⎥⎥⎦
where AP = L2 sec β. The Γ

NMM3Ddiff
matrix is derived in appendix. Then the global vertically

polarized component and horizontally polarized component of the scattered waves are:

v̂sn · Es = Es
v�

(
v̂sn · v̂(�)

sn

)
+ Es

h�

(
v̂sn · ĥ(�)

sn

)
ĥsn · Es = Es

v�

(
ĥsn · v̂(�)

sn

)
+ Es

h�

(
ĥsn · ĥ(�)

sn

)
The Stokes vector for the diffused scattered wave is:⎡⎢⎢⎢⎢⎢⎢⎢⎣

∣∣v̂sn · Es

∣∣2∣∣∣ĥsn · Es

∣∣∣2(
v̂sn · Es

) (
ĥsn · Es

)∗
(
v̂sn · Es

)∗ (
ĥsn · Es

)

⎤⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

(
v̂sn · v̂(�)

sn

)2 (
v̂sn · ĥ(�)

sn

)2 (
v̂sn · v̂(�)

sn

)(
v̂sn · ĥ(�)

sn

) (
v̂sn · v̂(�)

sn

)(
v̂sn · ĥ(�)

sn

)
(
ĥsn · v̂(�)

sn

)2 (
ĥsn · ĥ(�)

sn

)2 (
ĥsn · v̂(�)

sn

)(
ĥsn · ĥ(�)

sn

) (
ĥsn · v̂(�)

sn

)(
ĥsn · ĥ(�)

sn

)
(
v̂sn · v̂(�)

sn

)(
ĥsn · v̂(�)

sn

) (
v̂sn · ĥ(�)

sn

) (̂
hsn · ĥ(�)

sn

) (
v̂sn · v̂(�)

sn

)(
ĥsn · ĥ(�)

sn

) (
v̂sn · ĥ(�)

sn

)(
ĥsn · v̂(�)

sn

)
(
v̂sn · v̂(�)

sn

)(
ĥsn · v̂(�)

sn

) (
v̂sn · ĥ(�)

sn

)(
ĥsn · ĥ(�)

sn

) (
v̂sn · ĥ(�)

sn

)(
ĥsn · v̂(�)

sn

) (̂
vsn · v̂(�)

sn

)(
ĥsn · ĥ(�)

sn

)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎢⎣

∣∣Es
v�

∣∣2∣∣∣Es
h�

∣∣∣2
Es

v�
Es∗

h�

Es∗
v�

Es
h�

⎤⎥⎥⎥⎥⎥⎥⎦
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Combining the equations gives⎡⎢⎢⎢⎢⎢⎢⎢⎣

∣∣v̂sn · Es

∣∣2∣∣∣ĥsn · Es

∣∣∣2(
v̂sn · Es

) (
ĥsn · Es

)∗
(
v̂sn · Es

)∗ (
ĥsn · Es

)

⎤⎥⎥⎥⎥⎥⎥⎥⎦
uitamplitude of incidentRHCP

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

(̂
vsn · v̂(�)

sn

)2 (̂
vsn · ĥ(�)

sn

)2 (̂
vsn · v̂(�)

sn

) (̂
vsn · ĥ(�)

sn

) (̂
vsn · v̂(�)

sn

) (̂
vsn · ĥ(�)

sn

)
(̂
hsn · v̂(�)

sn

)2 (̂
hsn · ĥ(�)

sn

)2 (̂
hsn · v̂(�)

sn

) (̂
hsn · ĥ(�)

sn

) (̂
hsn · v̂(�)

sn

) (̂
hsn · ĥ(�)

sn

)
(̂
vsn · v̂(�)

sn

) (̂
hsn · v̂(�)

sn

) (̂
vsn · ĥ(�)

sn

) (̂
hsn · ĥ(�)

sn

) (̂
vsn · v̂(�)

sn

) (̂
hsn · ĥ(�)

sn

) (̂
vsn · ĥ(�)

sn

) (̂
hsn · v̂(�)

sn

)
(̂
vsn · v̂(�)

sn

) (̂
hsn · v̂(�)

sn

) (̂
vsn · ĥ(�)

sn

) (̂
hsn · ĥ(�)

sn

) (̂
vsn · ĥ(�)

sn

) (̂
hsn · v̂(�)

sn

) (̂
vsn · v̂(�)

sn

) (̂
hsn · ĥ(�)

sn

)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

1
R2

r

L2 secβ cos θ�i

4π
Γ

NMM3D
(θ�s, φ�s − φ�i, θ�i,0)

⎡⎢⎢⎢⎢⎢⎢⎣

∣∣Ei
v�

∣∣2∣∣∣Ei
h�

∣∣∣2
Ei

v�
Ei∗

h�

Ei∗
v�

Ei
h�

⎤⎥⎥⎥⎥⎥⎥⎦
The bistatic scattering coefficient for the diffuse incoherent wave of the patch is

γn,diff =
1

4π cos θi

1
L2

(4π)2 R2
r

[∣∣v̂sn · Es

∣∣2 +
∣∣∣ĥsn · Es

∣∣∣2]
uniRHCP incident amplitude

We define

Q
tilted =

⎡⎢⎢⎢⎣
Qtilted

1

Qtilted
2

Qtilted
3

Qtilted
4

⎤⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

(̂
vsn · v̂(�)

sn

)2 (̂
vsn · ĥ(�)

sn

)2 (̂
vsn · v̂(�)

sn

) (̂
vsn · ĥ(�)

sn

) (̂
vsn · v̂(�)

sn

) (̂
vsn · ĥ(�)

sn

)
(̂
hsn · v̂(�)

sn

)2 (̂
hsn · ĥ(�)

sn

)2 (̂
hsn · v̂(�)

sn

) (̂
hsn · ĥ(�)

sn

) (̂
hsn · v̂(�)

sn

) (̂
hsn · ĥ(�)

sn

)
(̂
vsn · v̂(�)

sn

) (̂
hsn · v̂(�)

sn

) (̂
vsn · ĥ(�)

sn

) (̂
hsn · ĥ(�)

sn

) (̂
vsn · v̂(�)

sn

) (̂
hsn · ĥ(�)

sn

) (̂
vsn · ĥ(�)

sn

) (̂
hsn · v̂(�)

sn

)
(̂
vsn · v̂(�)

sn

) (̂
hsn · v̂(�)

sn

) (̂
vsn · ĥ(�)

sn

) (̂
hsn · ĥ(�)

sn

) (̂
vsn · ĥ(�)

sn

) (̂
hsn · v̂(�)

sn

) (̂
vsn · v̂(�)

sn

) (̂
hsn · ĥ(�)

sn

)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
sec β cos θ�i

Γ
NMM3D,dif

(θ�s, φ�s − φ�i, θ�i,0)

⎡⎢⎢⎢⎢⎢⎣

∣∣Ei
v�

∣∣2∣∣∣Ei
h�

∣∣∣2
Ei

v�
Ei∗

h�

Ei∗
v�

Ei
h�

⎤⎥⎥⎥⎥⎥⎦
Thus

γn,diff =
1

cos θi

[
Qtilted

1 + Qtilted
2

]
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The power ratio of SWICI for NMM3D is then

PSWICI
r

Pt
=

GtGrλ
2

64π3R2
t R

2
r

∑
n

L2
[
Qtilted

1 + Qtilted
2

]
4.2. NMM3D Coherent Wave Complex Amplitude for Tilted Patch

As stated earlier, we need to calculate the coherent wave complex amplitude for a tilted patch. For
NMM3D, we cannot use peak amplitude of the coherent wave in the specular direction because the
tapered wave is used in NMM3D which causes angular spreading of the coherent wave so that the
peak amplitude depends on the tapering of the incident wave. We calculate the coherent wave complex
amplitude using the following approach.

We first calculate the reflectivity of the coherent wave which contributes to the emissivity of passive
remote sensing [23].

a) For vertical incidence we calculate, by integration

rcoh
v (θi) =

1
4π

∫ π/2

0
dθs sin θs

∫ 2π

0
dφs

[
γcoh

vv (θs, φs, θi, 0) + γcoh
hv (θs, φs, θi, 0)

]
(68)

The integration includes the angular spreading of the coherent wave to get the total power of the
coherent wave.

b) For horizontal polarized incidence, we have

rcoh
h (θi) =

1
4π

∫ π/2

0
dθs sin θs

∫ 2π

0
dφs

[
γcoh

vh (θs, φs, θi, 0) + γcoh
hh (θs, φs, θi, 0)

]
(69)

We next use an analogy to the Kirchhoff approximation for a patch of finite size. There is also angular
spreading in the sinc functions of the KA approach. For a large patch size L much larger than the
wavelength, the integration of sinc2 gives∫ π/2

0
dθs sin θs

∫ 2π

0
dφs exp

(−k2
dzh

2
)
sinc2

(
kdx

L

2

)
sinc2

(
kdy

L

2

)
=

4π2

k2L2 cos θi
exp

(−4h2k2
iz

)
Thus for KA: √

rcoh,KA
v = |Rv0| exp

(−2h2k2
iz

)
(70)√

rcoh,KA
h = |Rh0| exp

(−2h2k2
iz

)
(71)

For the phase, we also use an analogy. For vertical polarized incidence,

v̂s · F (0, 0) = −2Rv0 cos θi (72)

ĥs · F (0, 0) = 0 (73)

In the specular direction

θs = θi (74)

〈Es〉v = ik
1

4πRr
(v̂s (−2Rv0 cos θi)) exp

(−2h2k2
iz

)
L2 =

∣∣〈Es〉v
∣∣ exp (iφv) (75)

Thus the phase φv in the specular direction is given by

φv = −π

2
+ phase (Rv0) (76)

For horizontal polarized incidence:

v̂s · F (0, 0) = 0

ĥs · F (0, 0) = −2Rh0 cos θi
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In the specular direction

θs = θi (77)〈
Es

〉
h

= ik
1

4πRr

(
ĥs (−2Rh0 cos θi)

)
exp

(−2h2k2
iz

)
L2 =

∣∣〈Es〉h
∣∣ exp (iφh) (78)

The phase is then given by
φh = −π

2
+ phase (Rh0) (79)

Thus in NMM3D simulations, we first obtain, for vertical polarized incidence, the phase of the wave at
specular direction θs = θi, φv. Then the complex amplitude of the coherent wave is

ENMM3D,coh
v =

√
rcoh
v exp

(
i
(
φv +

π

2

))
.

Next we obtain, for horizontal polarized incidence, phase of the wave at specular direction θs = θi

φh.

Then the complex amplitude of the coherent wave is

ENMM3D,coh
h =

√
rcoh
h exp

(
i
(
φv +

π

2

))
.

In SWC-KA formula, the KA result is replaced by the NMM3D result for unit amplitude RHCP incident
wave [(

v̂snv̂sn + ĥsnĥsn

)
· F (0, 0, αn, βn)

]
exp

(
−w2

nh2
n

2

)
→

{
−
√

2 cos θ�i

[
v̂snENMM3D,coh

v + iĥsnENMM3D,coh
h

]
NMM3D,θ�i

}
Then the coherent scattered wave of NMM3D is

Ecoh,NMM3D
sn =

ikE0

4πRr
exp (ik (Rnt+Rnr))L2 sec βnsinc

(
(uaxx+vayx)

L

2

)
sinc

(
(uaxy+vayy)

L

2

)
{√

2 cos θ�i

[
v̂snENMM3D,coh

v + iĥsnENMM3D,coh
h

]
NMM3D,θ�i

}
The SWC power ratio of NMM3D is

P SWC,NMM3D
r

Pt
=

GtGr

64π2R2
rR

2
t∣∣∣∣∣∑

n

exp (ik (Rnt + Rnr))L2 sec βnsinc
(

(uaxx + vayx)
L

2

)
sinc

(
(uaxy + vayy)

L

2

)
{
−
√

2 cos θ�i

[
v̂snENMM3D,coh

v + iĥsnENMM3D,coh
h

]
NMM3D,θ�i

}∣∣∣∣2
5. RADIATIVE TRANSFER (RT) APPROACH FOR LARGER SLOPES

The name “RT” is chosen because in RT theory of volume scattering, the different scatterers are assumed
to be independent/uncorrelated. Extending the RT concept to rough surface scattering of patches, it
means that the scatterings from different patches are uncorrelated. The RT approach has two distinct
features:

(i) The patch phase term exp(ik(Rnt + Rnr)) is neglected.
(ii) The power ratio depends on the choice of coherent patch size L.
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Previously we obtain the RT result for the small slope approximation. In this section, we obtain
the result for larger slopes. In mountainous regions, the slopes are much larger than plains. Based on
the RT assumption, the power of SWC becomes:∣∣∣ESWC−RT

s

∣∣∣2 =
N∑

n=1

∣∣〈Esn

〉∣∣2 (80)

We define the scattering cross section σ0n by

Pr

Pt
=

GtGrλ
2

(4π)3R2
rR

2
t

N∑
n=1

Anσ0n (81)

where An is the area of the nth patch. For SWC-KA-RT,

σSWC−KA−RT
0n =

π

Anλ2

[∣∣(v̂sn · F (0, 0, αn, βn)
)∣∣2 +

∣∣∣ĥsn · F (0, 0, αn, βn)
∣∣∣2] |〈Ipn〉|2 (82)

For SWC-NMM3D
PSWC−NMM3D−RT

r

Pt

=
GrGt

64π2R2
rR

2
t

∑
n

∣∣∣∣exp (ik (Rnt + Rnr))L2 sec βnsinc
(

(uaxx + vayx)
L

2

)
sinc

(
(uaxy + vayy)

L

2

)
−
√

2 cos θi

[
v̂snENMM3Dcoh

v + iĥsnENMM3Dcoh
h

]∣∣∣2
The SWICI expression remains unchanged because of the inherent incoherent addition of diffuse
intensities.

6. NUMERICAL RESULTS

To illustrate the RT results, we further average the SWC and SWICI results over the orientation
distributions of the patches. Thus the summation is replaced by an integration N

∫ 2π
0 dα

∫ π
2

0 dβ over
orientation angle.

N∑
n=1

→ N

∫ 2π

0
dα

∫ π
2

0
dβ (83)

where p(β, α) is the probability density function. We use a uniform slope distribution up to βu

p(β, α) =
sinβu

2π(1 − cosβu)
(84)

for 0 ≤ β ≤ βu, 0 ≤ α ≤ π.
sinβ accounts for the shrinking of the differential solid angle near β = 0. Let Aeff be the effective

area of DDM pixel.
N = Aeff /L2

and we use:
Aeff = 15km × 15 km

A typical observed value for power ratio of 15 km×15 km effective area is between −205 dB and −175 dB.
We choose the following parameters for the DDM area: Gt = 20; Gr = 25; ht = 2.02 × 104 km; hr =
500 km, d = 1.74 × 104 km using these parameters, then: xs = −xt = 1.69 × 104 km; xr = 419.5 km;
θi = 40◦. Since the altitude of the transmitter is much higher than the receiver, the incidence angle θi

is constant, while the scattered angle θs is equal to the incident angle near the specular pint and has
significant difference far away from the specular point. For illustration, we choose the patch center to
be at (x0, y0, z0) = (100m, 50m, 10m): which is close to the specular point.
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6.1. Comparisons of SWC-RT and SWICI

In Figure 3, we show the results of SWC-RT and SWICI for L = 30 m, N = 2.5 × 105, βu = 10◦,
h = 2.5 cm, l = 20h=50 cm. Since a much larger slope is used with βu = 10◦, we used the formula for
larger slopes instead of based on the small slope approximation. It is noted that h = 2.5 cm is a typical
value of rms height used in SMAP [24, 29]. In matching radar backscattering data of UAVSAR [29], l

h
is taken between 5 and 50. The results show that SWC-RT is large for small slope and is −163.7 dB at
βu → 0◦. But the value decreases rapidly with increasing in slope. The SWC-RT falls below −200 dB
at βu = 8◦. For SWICI, the power ratio is −188.2 dB at βu → 0◦. It falls much slower than SWC-RT.
It becomes larger than SWC-RT at βu = 3◦. In complex terrain, 30 m is also too large for a patch to
be coherent as there are fine topographical elevations changes. However, the 30 meters is the standard
DEM. In Figure 4, we show the results of SWC-RT and SWICI for a smaller patch size of L = 2m. The
results show that SWC-RT has a much smoother decrease with slope. The power ratio is −187.2 dB at
βu → 0◦. The SWC-RT falls below −200 dB at βu = 8◦. For SWICI, the power ratio is same as that of
L = 30 m as SWICI is independent of patch size. It becomes larger than SWC-RT at βu = 3.2◦.

Figure 3. Partially coherent results for 30 m patch.

Figure 4. Partially coherent results for 2m patch.
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6.2. Implementation of Fine-scale Topography f2(x, y) with Elevation Uncertainties

As described in the introduction section, we consider the surface height as composed of a summation
of 3 kinds of roughness/topography.

z = f1 (x, y) + f2 (x, y) + f3(x, y) (85)

The coarse scale topography of 30 m in the horizontal plane is represented by f3(x, y) by linear
interpolation. At this moment there is no measurement of fine-scale topography f2(x, y), thus we
are implementing the 3 scale height profile as follows. The f3(x, y) linear profile of 30 meters is used to
decompose into 2m planar patches. The linear interpolation will give the orientation angle β, α of the
patch as well as the x and y slopes of p and q, respectively. The 30 m by 30 m patch is labeled as the
“parent” patch as it is decomposed into 225 patches, each of size 2 meters by 2 meters in the horizontal
plane. Thus each fine-scale patch n has L = 2 m. The 2 meter nth patch has the same slopes pn and
qn of the “parent” patch. The center of the 2 meter patch is (xn, yn, zn) where xn, yn are from the
parent patch while zn is from the original patch with an added gaussian random variable with standard
deviation σ. This uncertainty of elevation of gaussian random variable is used to represent f2(x, y).
The normal of the 2 meter patch is in the same direction as the parent 30 meter patch. The normal
n̂ = ẑ′′ with α, β are the Eulerian angles of the normal. The axes x̂′′ and ŷ′′ are as described earlier.
The microwave roughness is “perpendicular to the patch and is represented by f1(x′′, y′′).

Due to the elevation uncertainties, the exp(ik(Rnt + Rnr)) term gives random phase. By changing
the value of σ, the summation of the fields from 2 meter patches can be coherent, incoherent, and
partially coherent. We use the same transmitter and receiver setups and the same patch center position
in the previous section. In Figure 5, we show the summation of coherent waves from 225 patches of
size 2m by 2 m with same topographical slopes. The results are averaged over 400 realizations for the
elevation uncertainties. In Figure 5, the power ratios for 225 2m patches with σ = 0 and σ = 3 cm are
shown. For σ = 0cm, the power ratio is maximum at β = 0, and then fluctuate up to 50 dB as the
elevation angle β increases. The coherent waves from the 225 patches are adding up fully coherently.
The result is the same as a 30 m patch as a whole because of the property of sinc function. For the curve
with σ = 3cm, the power ratio has a maximum at β = 0 as well but is smaller than σ = 0 case, and
Pr/Pt decrease smoothly until a dip at 3.5◦. With the partially coherent effect, the partially coherent
model can match up with data.

Figure 5. Pr/Pt for 2 m patch with σ = 0 cm and σ = 3cm.

6.3. NMM3D Results

We show the results for the coherent and incoherent Pr/Pt over a 30 m patch near the specular point
based on NMM3D. Figure 6 shows the results for the coherent wave contribution from a 30 meter patch
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Figure 6. Pr/Pt for 30 m patch with different rms height based on NMM3D and KA.

Figure 7. Pr/Pt for 30 m patch with 1 cm rms height with different slope angle.

based on NMM3D results and Kirchhoff. It is shown that the results for NMM3D and KA agree well at
small rms height. When the rms height is large, the coherent power form Kirchhoff decays exponentially,
while NMM3D results decay much slower. For large rms height, the coherent power still contributes to
the total power.

Figure 7 shows the incoherent Pr/Pt for a 30 m patch as a function of slope angle β. The rms height
for the rough surface is 1 cm with a correlation length of 10 cm. It is shown that both of the incoherent
power curves decrease gradually within 2 dB as the slope angle increases from 0 to 5 degrees. This is
because the diffuse scattering pattern is not as directional as the coherent wave scattering. It is well
established that Kirchhoff is accurate in the vicinity of the forward direction and becomes inaccurate
in the backscattering direction. In particular the VV of KA is inaccurate in radar backscattering such
as at 40 degrees incident angle of SMAP.
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6.4. DDM Simulation

In the 3-scale roughness and topography of
f(x, y) = f1(x, y) + f2(x, y) + f3(x, y) (86)

the f1(x, y) profiles are centimeters microwave roughness which have been measured over CYGNSS sites.
The f3(x, y) profiles are based on coarse scale topography of 30 meters Digital Elevation Model (DEM).
We use these DEM data elevations from SRTM mission [30] to construct 30 meters planar patches with
slopes to represent f3(x, y). Each planar patch in f3(x, y) has a single slope. The f2(x, y) profiles are
a fine scale topography between centimeter microwave roughness and 30 meter coarse scale DEM. The
fine scale patch size is L2. Each L2 is a fine scale planar patch with microwave roughness f1(x, y) super
imposed on it. The fine scale planar patch L2 is tilted with slope given by f2(x, y) + f3(x, y).

There is presently no available information to characterize fine scale topography. Recently lidar
measurements have been taken from which the fine scale topography profiles can be reconstructed in the
future. The fine scale topography is important for the fine scale partially coherent patch model because
in this intermediate length scale, the scattered waves make transition from coherent to partially coherent
and to incoherent. In this paper, we use uncertainties to represent f2(x, y). The f2(x, y) generated by
uncertainties is shown in Figure 8(b) together with microwave roughness f1(x, y) in Fig. 8(a) and f3(x, y)
as in Fig. 8(c).

(a) (b) (c)

Figure 8. Three scales for the land surface. (a) shows the microwave roughness profile f1(x, y). f1(x, y)
is the microwave roughness with centimeter scale changes. f3(x, y) in (c) is the coarse topography in
tens of meters scale. f2(x, y) in (b) is the fine scale topography in the scale of meters. In this paper,
we use random variable to represent f2(x, y) and thus f2(x, y) are stair cases.

Let ADDM be the physical land area of DDM. In the calculation of complex field summation
in Eq. (65), it is not necessary to calculate field summation for the entire DDM area ADDM as in
most cases of complex terrain, except water bodies or wetlands, the scattered wave will have become
incoherent through addition of complex fields with random phase. This assumption will simplify the
implementation of field summations. The DDM area ADDM is divided into large areas of L2

large. L2
large

is chosen so that the scattered wave from L2
large is incoherent, and intensities summations rather than

field summations can be carried out over different L2
large areas. Within a single L2

large, the scattered
wave is assumed to be coherent or partially coherent, so that complex field summation is carried out
and then squared to obtain the intensity of that L2

large.
Because of speckle associated with complex field summations, a Monte Carlo approach is taken on

the scattered intensities of L2
large over realizations of f2(x, y). Let

M =
ADDM

L2
large

be the number of L2
large in ADDM . Let

Nlarge =
L2

large

L2
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be the number of patches of L2 in L2
large. With this simplification we then have for the field summation

in SWC

PSWC
r

Pt
=

GrGt

64π2R2
rR

2
t

M∑
m=1

〈∣∣∣∣Nlarge∑
n=1

L2 exp(ik(Rnt + Rnr)) exp(−2k2h2
n cos2 θi)sinc

(
(kdmx + kdmzpn)L

2

)

sinc
(

(kdmy + kdmzqn)L
2

)[
2 cos θi[v̂sRv(θi) + iĥsRh(θi)]√

2

] ∣∣∣∣2〉
m

(87)

where we use the mth index for L2
large and the nth index for L2. The angular bracket 〈 〉m denotes

averaging over realizations of fine scale topography f2(x, y) over the single mth L2
large. The n index

denotes the nth L2 patch inside the mth L2
large. The choices of L and Llarge are dependent on terrain

and are subjects of continued studies. In this paper we choose
L = 2m

Llarge = 30m
Nlarge = 225

In DDM simulations, a weighting factor is inserted that represents the discretization of the very
large DDM area based on delay-doppler signal processing.

Let
Pij =

Pr

Pt

of the i, jth pixel in the DDM.
We follow the formulations in [15]. Then

PSWC
rij

Pt
=

GrGt

64π2R2
rR

2
t

M∑
m=1

|Wm(i, j)|2

〈∣∣∣∣∣
N∑

n=1

exp(ik(Rnr+Rnt))
(
v̂sn

(
v̂sn ·F (0, 0, αn, βn)

)
+ĥsn

(
ĥsn ·F (0, 0, αn, βn)

))
〈Ipn〉

∣∣∣∣∣
2〉

m

(88)

Figure 9. Location of Cal/Val site sensors and DDM Specular points. The data near Z1 is taken from
CYGNSS v2.1 data, and the data near Z4 is from CYGNSS sandbox data. Both are from day 301 of
2019.
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We truncate the coherent summation of fields over 2m patches at N = 225 which is at 30m × 30 m
area size, that is within 30m× 30 m, we add up the fields while between 30m× 30m, the intensities are
added up. The index m is for the 30m × 30 m areas, and we have M 30m × 30 m areas contributing to
the ith delay, jth doppler bin. The incoherent part is expressed as

PrSWCICI

Pt

=
GrGt

64π2R2
rR

2
t

N∑
n=1

|Wn(i, j)|2
(∣∣v̂sn · F (0, 0, αn, βn)

∣∣2 +
∣∣∣ĥsn · F (0, 0, αn, βn)

∣∣∣2)〈|Ip − 〈Ip〉|2
〉

n
(89)

In simulating the DDMs, we use a coherent patch size of 2m. The topographical elevations and slopes
are obtained by SRTM data with 30 m resolution [30].

We compare the simulation results with CYGNSS data. Ground Cal/Val measurements have
performed at San Luis valley sites, and soil moisture sensors are planted at sites Z1 and Z4 as shown

(a) (b)

Figure 10. Weighting function for 0 chip delay and 0 Hz doppler pixel in (a) DDM and (b) normalized
bistatic RCS σ0. The σ0 is shown for area where weighting function value |W |2 > 0.01.

(a) (b)

Figure 11. Weighting function for 0.25 chip delay and 0Hz doppler pixel in (a) DDM and (b)
normalized bistatic RCS σ0. The σ0 is shown for area where weighting function value |W |2 > 0.01.
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(a) (b)

Figure 12. Weighting function for 0 chip delay and −500 Hz doppler pixel in (a) DDM and (b)
normalized bistatic RCS σ0. The σ0 is shown for area where weighting function value |W |2 > 0.01.

Figure 13. DDM simulation compared with data in σbrcs at the site close to Z1. The σbrcs is plotted
in dB square meter.

in Figure 9. Since the soil moisture data have not been calibrated, we assume the soil permittivity be
5.5+2i, which is about 10 percent soil moisture. We choose 2 DDMs: one is at plain area (Lat: 37.197 N
Lon: 106.0032 W) near the senors of Z1, and the other (37.077 N 105.8332 W) is in mountainous area
near Z4.

Through Figure 10 to Figure 12, we show the weighting function |W |2 map for the bins of
tau = 0 chip, doppler = 0 Hz, tua = 0.25 chip doppler = 0 Hz and tau = 0 chip, doppler = −500 Hz.
The detailed expression for weighing function can be found in appendix. The weighting function value
is shown on the left column while the normalized bistatic cross section (σ0) is shown on the right. We
show σ0 for the area where |W |2 > 0.01. By observing the changes in delay and doppler respectively,
we see that as the delay increases, the peak value of weighing function moves away from specular point,
and as the doppler frequency decreases, the peak value moves to the left.

Figure 13 shows the comparison of data and simulation. We use 2 cm uncertainty as f2 for flat
area and 3 cm uncertainty for mountainous area and rms heights of 0.5 cm and 2.5 cm, respectively. Due
to the flatness of the region, the scattered power has more coherent effect, which means that the area
near the specular point will contribute more scattered power. As in the DDMs, the pixels close to 0
delay 0 doppler bins should be much greater than other pixels. This is observed in the CYGNSS data
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Figure 14. DDM simulation compared with data in the format of σbrcs close to Z4. The σbrcs is plotted
in dB square meter.

which has a bistatic radar cross section of 104.5 dBsm. The simulated DDM also shows a peak in the
center and has a center pixel value of 106 dBsm. In Figure 14, the power in DDM bins are more spread
out. This is because the specular point is close to mountainous area, where coherent effect is low due
to the land variations. We use 4 cm uncertainty to represent the variation of f2 in mountainous region
and use 3 cm uncertainty in the plain area. The rms heights for 2 regions are selected as 0.5 cm and
2.5 cm, respectively. The center pixel is 98.95 dBsm from simulation, and the data have a peak value
of 100.5 dBsm. The asymmetry of the DDM is because negative doppler bins have more flat area than
the positive doppler bins.

7. CONCLUSION

In this paper, we present a fine scale partially coherent patch model for GNSS-R land application. The
complex terrain is assumed to be composed of three scales of roughness and topography. In the 3-scale
roughness/topography of f(x, y) = f1(x, y) + f2(x, y) + f3(x, y), the f1(x, y) profiles are centimeters
microwave roughness which have been measured in CYGNSS sites. The f3(x, y) profiles are based on
coarse scale topography of 30 meters Digital Elevation Model (DEM). The intermediate scale f2(x, y)
is important for this partially coherent model as the scattered waves make transitions from coherent
to partially coherent and to incoherent in this length scale. Complex field summations are used within
area of L2

large, and intensity summations are used over areas of L2
large. The simulated DDMs are in

good agreement with CYGNSS data. In the present version of the fine scale partially coherent patch
model, we use uncertainties of gaussian random variables to characterize f2(x, y). The characterization
of f2(x, y) is a subject of continued studies and will be related to recent lidar measurements of complex
terrain. The characterization of f2(x, y) profiles from lidar measurements will be used to develop a new
version of FPCP.

APPENDIX A. NMM3D DIFFUSE Γ

In this appendix we describe the derivation of the
=
Γ

NMM3D,dif

from the NMM3D simulation data.
For each realization, we have a unit amplitude incident vertically polarized wave Ei

v�
= 1 from

which the scattered amplitudes of Es
v�

and Es
h�

are calculated. Then the scattering amplitudes fv�v�
and

fh�v�
are derived.

This is repeated for horizontal polarized incidence Ei
h�

= 1, from which fv�h�
and fh�h�

are derived.
The scattering amplitudes, fv�v�

, fh�v�
, fv�h�

and fh�h�
, are normalized such that the bistatic

scattering coefficients of the incoherent waves are calculated.
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For general Ei
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)
Thus we have the relations similar to the phase matrix of page 125 of [12]. Using the simulation data
for each realization, averages are taken, and the coherent waves are subtracted to obtain the diffuse
incoherent waves.⎡⎢⎢⎢⎢⎢⎢⎣

∣∣Es
v�

∣∣2∣∣∣Es
h�

∣∣∣2
Es

v�
Es∗

h�

Es∗
v�

Es
h�

⎤⎥⎥⎥⎥⎥⎥⎦
dif

=
1

R2
r

⎡⎢⎢⎢⎢⎣
|fv�v�

|2 |fv�h�
|2 fv�v�

f∗
v�h�

f∗
v�v�

fv�h�

|fvhv�
|2 |fh�h�

|2 fh�v�
f∗

h�h�
f∗

h�v�
fh�h�

fv�v�
f∗

h�v�
fv�h�

f∗
h�h�

fv�v�
f∗

h�h�
fv�h�

f∗
h�v�

f∗
v�v�

fh�v�
f∗

v�h�
fh�h�

f∗
v�h�

fh�v�
f∗

v�v�
fh�h�

⎤⎥⎥⎥⎥⎦
dif

⎡⎢⎢⎢⎢⎢⎢⎣

∣∣Ei
v�

∣∣2∣∣∣Ei
h�

∣∣∣2
Ei

v�
Ei∗

h�

Ei∗
v�

Ei
h�

⎤⎥⎥⎥⎥⎥⎥⎦
where “dif ” denotes the diffuse incoherent waves. Using definitions of bistatic scattering coefficients.

γχ�κ�
=

4πR2
r

∣∣Es
χ�

∣∣2∣∣Ei
κ�

∣∣2 AP cos θ�i

=
4π |γχ�κ�

|2∣∣Ei
α�

∣∣2 AP cos θ�i

the ΓNMM3D,dif (θ�s, φ�s − φ�i, θ�i,0) is defined by

Γ (θ�s, φ�s − φ�i, θ�i,0) =
4π

AP cos θ�i
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dif

=

⎡⎢⎢⎢⎣
γ�

11 γ�
12 γ�

13 γ�
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γ�
21 γ�

22 γ�
23 γ�

24

γ�
31 γ�

32 γ�
33 γ�

34

γ�
41 γ�

42 γ�
43 γ�

44

⎤⎥⎥⎥⎦
incoh

(θ�s, φ�s − φ�i, θ�i,0)

The relation is used in deriving the SWICI of NMM3D.

APPENDIX B. GEOMETRIC OPTICS APPLIED TO SWC-RT

In this appendix, we apply the geometric optics to the SWC-RT approach, getting equations for power
ratio labeled as “SWC-RT-GO”. In geometric optics, wavenumber k is large. For the patch model, this
means that the patch size L is such that kL 	 1. However, the microwave roughness rms height h
can still be small compared with wavelength. In this derivation, we take 2 approximations of the sinc2

function.
Consider that the function limεd→0

1
πεd

sinc2( x
εd

) is a sharply peaked positive function. It is similar to
a dirac delta function. To approximate by a delta function, we also equate the integral as the integration
of dirac delta function is equal to unity:

The first approximation is replaced by a delta function

lim
εd→0

1
πεd

sinc2

(
x

εd

)
= δ(x) (B1)

The second approximation is replaced by a gaussian function

lim
εd→0

1
πεd

sinc2

(
x

εd

)
= lim

εd→0

1
πεd

exp
(
− 1

π
(
x

εd
)2
)

(B2)

Note that we match the integral of the function rather than the quadratic dependence at the origin.
An examination of the quadratic dependence at x = 0 has a small difference with 3 on the left handside
and π on the right handside.
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B.1. Approximation of Replacing sinc2 by Delta Functions

For large patch size L, we have the following approximation, using εd = 2
kdnzL :

sinc2

((
kdnx

kdnx
+ pn

)
kdnzL

2

)
sinc2

((
kdny

kdnz
+ qn

)
kdnzL

2

)
=

4π2

k2
dnzL

2
δ

(
kdnx

kdnx
+ pn

)
δ

(
kdny

kdnz
+ qn

)
(B3)

We further use k2
dnz = 4k2 cos2 θi. Then the power ratio is

P SWC-RT
r

Pt
=

GrGtλ
2

64π2R2
rR

2
t

N∑
n=1

L2e−4k2h2
n cos2 θi |RCP (θin)|2 δ

(
kdnx

kdnx
+ pn

)
δ

(
kdny

kdnz
+ qn

)
(B4)

where hn is the rms height of microwave roughness, and θin is the incident angle on the nth patch.
We next carry an average over the topographical slope distributions. Let pT (p, q) be the probability

density function of the topography slope. Then integrating by
∫∞
−∞ dp

∫∞
−∞ dqpT (p, q) over the dirac delta

functions,

P SWC-RT
r

Pt
=

GrGtλ
2

64π2R2
rR

2
t

N∑
n=1

L2e−4k2h2
n cos2 θi |RCP (θin)|2 pT

(
p = −kdnx

kdnx
, q =

kdny

kdnz

)
(B5)

The above is identical to Zavoronty’s [15] work.
For homogeneous terrain and close to the specular point, we drop the n term and set θsn = θin = θi.

The formula then is simplified to:

P SWC-RT-GO
r

Pt
=

GrGtλ
2A

64π2R2
rR

2
t

e−4k2h2 cos2 θi |RCP (θi)|2 pT (p = 0, q = 0) (B6)

where A is the area. Consider the example of Gaussian distribution of topographical slope

pT (p, q) =
1

2πs2
T

exp
(
−p2 + q2

2s2
T

)
(B7)

where the parameter sT denotes the topographical slope, then we have:

P SWC-RT-GO
r

Pt
=

GrGtλ
2A

64π2R2
rR

2
t

(
1

2πs2
T

)
e−4k2h2 cos2 θi |RCP (θi)|2 (B8)

which coincides, aside from the factor exp(−4k2h2 cos2 θi), with the incoherent model [14].
In Figure B1, we plot the case using the SWC-RT formula versus the simple formula with different

patch sizes for the SWC-RT. We let
L = 1, 2, 10, 30meters

and set the rms height h = 0.
We see that the case of L = 10 m has a small difference from geometric optics while the case of

L = 30 m becomes identical with that of geometrical optics. The cases of L = 1 meter and L = 2 meters
have significant differences from that of the incoherent model.

B.2. Approximation of Replacing sinc2 by Gaussian Functions

Using εd = 2
kdnzL , then

sinc2

((
kdnx

kdnx
+ pn

)
kdnzL

2

)
sinc2

((
kdny

kdnz
+ qn

)
kdnzL

2

)
= exp

(
−k2

dnzL
2

4π

[(
kdnx

kdnx
+ pn

)2

+
(

kdny

kdnx
+ qn

)2
])

(B9)
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Figure B1. Pr/Pt for different patch size.

We further use k2
dnz = 4k2 cos2 θi. Then the power ratio is

PSWC−RT
r

Pt
=

GrGtλ
2

64π2R2
rR

2
t

N∑
n=1

L2 |RCP (θi)|2 k2L2 cos2 θi

π2

exp

(
−k2 cos2 θiL

2

π

[(
kdnx

kdnx
+ pn

)2

+
(

kdny

kdnx
+ qn

)2
])

e−4k2h2
n cos2 θi

We define the cross section σ0n such that:

P SWC-KA-RT
r

Pt
=

GrGtλ
2

64π2R2
rR

2
t

N∑
n=1

L2 σ0n

π
(B10)

Then

σ0n = |RCP (θi)|2 k2L2 cos2 θi

π

exp

(
−k2 cos2 θiL

2

π

[(
kdnx

kdnx
+ pn

)2

+
(

kdny

kdnx
+ qn

)2
])

e−4k2h2
n cos2 θi

If we let (k cos θiL)2

π = 1
2σ2

rg
, the above formula is the same as Equations (46) and (47) in [17]. The

three incoherent optics models: Mohammad, Zavotnony, and Campbell based on geometric optics are
of similar concepts. The differences among the three models are the evaluations of the slope probability.
The incoherent model in [14] evaluates the value at zero slope in both x and y directions. In paper [15],
the value is evaluated considering the difference between the incident and scattering direction that is
far away from the specular point. Campbell’s model evaluates the values at the topographical slope
together with difference between the incident and scattering angle.

APPENDIX C. WEIGHTING FUNCTION FOR DDMS

In this section, we show the definition of weighting functions as given in [15]. The received signal is
given as:

u(t) =
N∑

n=1

√
Aeuna (t − τn]) exp

(
−2πifdoppler

n t
)

(C1)
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where Ae is the effective aperture of the receiver antenna, a(t−τn) the PRN code from the GPS satellite,
and taun = [Rnt + Rnr/c0 the delay from nth patch. fdoppler

n = (vt · R̂nt − vr · R̂rs)/λ is the doppler
frequency of the nth patch. To get the power for each delay and doppler bin, the signal is correlated
with reference PRN code and frequency signal.

Y (τi, fj) =
∫ Ti

0
a(t)u(t) exp(2πifjt)dt (C2)

where Ti is the integration time and usually much greater than τc, which is the chip length. Then

Y (τi, fj) = Ti

N∑
n=1

un
1
Ti

∫ Ti

0
a(t)a(t − τn) exp

(
−2πi

(
fdoppler

n − fj

))
(C3)

and the term

χ(δτ, δf) =
1
Ti

∫ Ti

0
a(t)a(t + δτ) exp(−2πi(δf)) (C4)

is known as the Woodward Ambiguity Function and can be approximated as

χ(δτ, δf) = Λ(δτ)S(δf) (C5)

where Λ(δτ) and S(δf) are weighting functions in the delay and doppler domain, respectively:

Λ(δτ) =
1
Ti

∫ Ti

0
a(t)a(t + δτ)dt (C6)

= 1 − δτ

Ti
, |δτ | ≤ τc(1 − τc/Ti) (C7)

= −τc/Ti, |δτ | ≥ τc(1 − τc/Ti) (C8)

since Ti is much larger than τc, −τc/Ti = 0. For the weighting function in frequency domain, we have

S(δf) =
1
Ti

∫ T i

0
exp(−2πiδft)dt =

sin(πδfTi)
πδfTi

exp(−πiδfTi) (C9)

The weighting function on each patch is thus defined as:

Wn(i, j) = Λ(τn − τi)S
(
fdoppler

n − fj

)
(C10)
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