1. Chung, I., J.-H. Song, J. I. Jang, A. J. Freeman, and M. G. Kanatzidis, "Na2Ge2Se5: A highly nonlinear optical material," Journal of Solid State Chemistry, November 2012.
2. Rout, A., G. S. Boltaev, R. A. Ganeev, Y. Fu, S. K. Maurya, V. V. Kim, K. S. Rao, and C. Guo, "Nonlinear optical studies of gold nanoparticle films," Nanomaterials, Vol. 9, 291, 2019.
doi:10.3390/nano9020291
3. Wu, R., J. Collins, L. T. Canham, and A. Kaplan, "The influence of quantum confinement on third-order nonlinearities in porous silicon thin films," Appl. Sci., Vol. 8, 1810, 2018.
doi:10.3390/app8101810
4. Sakhno, O., P. Yezhov, V. Hryn, V. Rudenko, and T. Smirnova, "Optical and nonlinear properties of photonic polymer nanocomposites and holographic gratings modified with noble metal nanoparticles," Polymers, Vol. 12, 480, 2020.
doi:10.3390/polym12020480
5. Varin, C., R. Emms, G. Bart, T. Fennel, and T. Brabec, "Explicit formulation of second and third order optical nonlinearity in the FDTD framework," Computer Physics Communications, Vol. 222, January 2018.
doi:10.1016/j.cpc.2017.09.018
6. Zygiridis, T. T. and N. V. Kantartzis, "Finite-difference modeling of nonlinear phenomena in time-domain electromagnetics: A review," Applications of Nonlinear Analysis. Springer Optimization and Its Applications, Vol. 134, Rassias T. (eds), Springer, Cham., 2018.
7. Xu, L., M. Rahmani, D. Smirnova, K. ZangenehKamali, G. Zhang, D. Neshev, and A. E. Miroshnichenko, "Highly-efficient longitudinal second-harmonic generation from doublyresonant AlGaAs nanoantennas," Photonics, Vol. 5, 29, 2018.
doi:10.3390/photonics5030029
8. De Ceglia, D., L. Carletti, M. A. Vincenti, C. De Angelis, and M. Scalora, "Second-harmonic generation in Mie-resonant GaAs nanowires," Appl. Sci., Vol. 9, 3381, 2019.
doi:10.3390/app9163381
9. Rocco, D., M. A. Vincenti, and C. De Angelis, "Boosting second harmonic radiation from AlGaAs nanoantennas with epsilon-near-zero materials," Appl. Sci., Vol. 8, 2212, 2018.
doi:10.3390/app8112212
10. Nguyen, D. T. T. and N. D. Lai, "Deterministic insertion of KTP nanoparticles into polymeric structures for efficient second-harmonic generation," Crystals, Vol. 9, 365, 2019.
doi:10.3390/cryst9070365
11. Huang, Z., H. Lu, H. Xiong, Y. Li, H. Chen, W. Qiu, H. Guan, J. Dong, W. Zhu, J. Yu, Y. Luo, J. Zhang, and Z. Chen, "Fano resonance on nanostructured lithium niobate for highly efficient and tunable second harmonic generation," Nanomaterials, Vol. 9, 69, 2019.
doi:10.3390/nano9010069
12. Cheng, T., Y. Xiao, S. Li, X. Yan, X. Zhang, T. Suzuki, and Y. Ohishi, "Highly efficient second-harmonic generation in a tellurite optical fiber," Optics Letters, Vol. 44, No. 19, 2019.
doi:10.1364/OL.44.004686
13. Kumar, S. and M. Sen, "High-gain, low-threshold and small-footprint optical parametric amplifier for photonic integrated circuits," J. Opt. Soc. Am. B, Vol. 35, 362-371, 2018.
doi:10.1364/JOSAB.35.000362
14. APL Photonics, Vol. 4, 086102, 2019, https://doi.org/10.1063/1.5103272.
15. Milton, M. J. T., T. J. McIlveen, D. C. Hanna, and P. T. Woods, "A high-gain optical parametric amplifier tunable between 3.27 and 3.65 μm," Optics Communications, Vol. 93, No. 3–4, 186-190, 1992, ISSN 0030-4018.
doi:10.1016/0030-4018(92)90526-W
16. Wnuk, P., Y. Stepanenko, and C. Radzewicz, "High gain broadband amplification of ultraviolet pulses in optical parametric chirped pulse amplifier," Optics Express, Vol. 18, No. 8, 7911-7916, Apr. 2010.
doi:10.1364/OE.18.007911
17. Ooi, K., D. Ng, T. Wang, et al. "Pushing the limits of CMOS optical parametric amplifiers with USRN: Si7N3 above the two-photon absorption edge," Nat. Commun., Vol. 8, 13878, 2017.
doi:10.1038/ncomms13878
18. Wei, X., Y. Peng, X. Luo, T. Zhou, J. Peng, Z. Nie, and J. Gao, "High-efficiency mid-infrared optical parametric amplifier with approximate uniform rectangular pump distribution," Proc. SPIE 10436, High-Power Lasers: Technology and Systems, Platforms, and Effects, 104360I, Oct. 26, 2017.
19. Asırım, O. E. and M. Kuzuoglu, "Super-gain optical parametric amplification in dielectric micro-resonators via BFGS algorithm-based non-linear programming," Appl. Sci., Vol. 10, 1770, 2020.
doi:10.3390/app10051770
20. Asırım, O. E. and M. Kuzuoglu, "Enhancement of optical parametric amplification in micro-resonators via gain medium parameter selection and mean cavity wall reflectivity adjustment," Journal of Physics B: Atomic, Molecular and Optical Physics, Apr. 2020.
21. Coetzee, R. S., A. Zukauskas, J. M. Melkonian, and V. Pasiskevicius, "An efficient 2 μm optical parametric amplifier based on large-aperture periodically poled RB:KTP," Proc. SPIE 10562, International Conference on Space Optics — ICSO 2016, 105620L, Sep. 25, 2017.
22. Liu, X., R. Osgood, Y. Vlasov, et al. "Mid-infrared optical parametric amplifier using silicon nanophotonic waveguides," Nature Photon, Vol. 4, 557-560, 2010.
doi:10.1038/nphoton.2010.119
23. Gonzalez, M. and Y. Lee, "A study on parametric amplification in a piezoelectric MEMS device," Micromachines (Basel), Vol. 10, No. 1, 19, 2018.
doi:10.3390/mi10010019
24. Al-Mahmoud, M., A. A. Rangelov, V. Coda, and G. Montemezzani, "Segmented composite optical parametric amplification," Appl. Sci., Vol. 10, 1220, 2020.
doi:10.3390/app10041220
25. Kida, Y. and T. Imasaka, "Four-wave optical parametric amplification in a raman-active gas," Photonics, Vol. 2, 933-945, 2015.
doi:10.3390/photonics2030933
26. Manzoni, C. and G. Cerullo, J. Opt., Vol. 18, 103501, 2016.
27. Wang, K.-Y. and A. C. Foster, J. Opt., Vol. 17, 094012, 2015.
28. Schmidt, B., N. Thire, M. Boivin, et al. "Frequency domain optical parametric amplification," Nat. Commun., Vol. 5, 3643, 2014.
doi:10.1038/ncomms4643
29. Dao, L., K. Dinh, and P. Hannaford, "Perturbative optical parametric amplification in the extreme ultraviolet," Nat. Commun., Vol. 6, 7175, 2015.
doi:10.1038/ncomms8175
30. Ilday, F. O. and F. X. Kartner, "Cavity-enhanced optical parametric chirped-pulse amplification," Opt. Lett., Vol. 31, 637-639, 2006.
doi:10.1364/OL.31.000637
31. Asırım, O. E. and M. Kuzuoglu, "Optimization of optical parametric amplification efficiency in a microresonator under ultrashort pump wave excitation," International Journal of Electromagnetics and Applications, Vol. 9, No. 1, 14-34, 2019.
32. Yang, M., et al., "An octave-spanning optical parametric amplifier based on a low-dispersion silicon-rich nitride waveguide," IEEE Journal of Selected Topics in Quantum Electronics, Vol. 24, No. 6, 1-7, Art No. 8300607, Nov.–Dec. 2018.
doi:10.1109/JSTQE.2018.2836992
33. Varin, C., G. Bart, T. Fennel, and T. Brabec, "Nonlinear Lorentz model for the description of nonlinear optical dispersion in nanophotonics simulations [Invited]," Opt. Mater. Express, Vol. 9, 771-778, 2019.
doi:10.1364/OME.9.000771
34. Boyd, R. W., Nonlinear Optics, 105-107, Academic Press, 2008.
35. Saleh, B. E. A. and M. C. Teich, Fundamentals of Photonics, 885-917, Wiley-Interscience, 2007.
36. Nocedal, J. and S. J. Wright, Numerical Optimization, 36-37, Springer, 2006.
37. Asırım, O. E., Super-gain parametric wave amplification in optical micro-resonators using ultrashort pump waves, Middle East Technical University Library, 2020.
38. Paschotta, R., "Article on ‘optical parametric amplifiers’," Encyclopedia of Laser Physics and Technology, 1st Edition, Wiley-VCH, Oct. 2008, ISBN 978-3-527-40828-3.
39. Yang, Y., D. Zhu, W. Yan, et al. "A general theoretical and experimental framework for nanoscale electromagnetism," Nature, Vol. 576, 248-252, 2019.
doi:10.1038/s41586-019-1803-1
40. Abubakar, A. B., P. Kumam, H. Mohammad, A. M. Awwal, and K. Sitthithakerngkiet, "A modified Fletcher-Reeves conjugate gradient method for monotone nonlinear equations with some applications," Mathematics, Vol. 7, 745, 2019.
doi:10.3390/math7080745
41. Sellami, B. and M. C. E. Sellami, "Global convergence of a modified Fletcher-Reeves conjugate gradient method with Wolfe line search," Asian-European Journal of Mathematics, Vol. 13, No. 04, Jun. 2020.
doi:10.1142/S1793557120500813
42. Pang, D., S. Du, and J. Ju, "The smoothing Fletcher-Reeves conjugate gradient method for solving finite minimax problems," Science Asia, Vol. 42, 40-45, 2016.
doi:10.2306/scienceasia1513-1874.2016.42.040
43. Frazer, L., J. K. Gallaher, and T. W. Schmidt, "Optimizing the efficiency of solar photon upconversion," ACS Energy Letters, Vol. 2, No. 6, 1346-1354, 2017.
doi:10.1021/acsenergylett.7b00237
44. Seo, Y.-K., J.-H. Seo, and W.-Y. Choi, "Photonic frequency-upconversion efficiencies in semiconductor optical amplifiers," Photonics Technology Letters, Vol. 15, 751-753, IEEE, 2003.
doi:10.1109/LPT.2003.809970
45. Tan, W., X. Qiu, G. Zhao, et al. "High-efficiency frequency upconversion of 1.5 μm laser based on a doubly resonant external ring cavity with a low finesse for signal field," Appl. Phys. B, Vol. 123, 52, 2017.
doi:10.1007/s00340-016-6626-2