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Design of Ultra-High Gain Optical Micro-Amplifiers via Smart

Nonlinear Wave Mixing

Özüm E. Aşırım1, * and Alim Yolalmaz2

Abstract—Optical amplification by nonlinear wave mixing offers wideband high-gain amplification that
is desirable for a variety of applications. When the wave mixing process occurs in an interaction medium
with sufficient length, the attained gain per excitation pulse is usually higher than that can be attained
by lasers. Furthermore, the bandwidth of amplification via nonlinear wave mixing is much higher
than the bandwidth allowed by laser transitions of laser gain media. However, optical amplification by
nonlinear wave mixing offers negligible gain in the micrometer scale, due to a very limited length of the
interaction medium. In micro-resonators, such a short interaction length does not offer sufficient small
signal gain to compensate the round-trip loss. In this study, we present a Fletcher-Reeves algorithm-
based nonlinear programming of the wave mixing process that tunes the frequencies of the excitation
pulses of the source device in order to provide an ultra-high optical gain in the micro-scale via maximizing
the electric energy density in a micro-resonator. Using this smart wave mixing approach, we obtained
a micro-resonator gain of 4.7 × 107 for an input wave at 640 THz and a gain of 1.5 × 108 at 100 THz.
The results of our mathematical formulation are compared with well-known experimental results, and
a mean accuracy of 99% is observed. The study aims to show that optical amplifiers that are based
on the principle of nonlinear wave mixing can be used in the micro-scale for wideband ultra-high gain
operation.

1. INTRODUCTION

Optical parametric amplification (OPA) has been extensively studied and can be used for a variety
of applications, such as photonic integrated circuits, high-speed optical communications, piezoelectric
MEMS devices, and generation of intense laser beams. Optical parametric amplification is achieved via
mixing a nonlinearity inducing high-intensity pump wave with an input wave of low intensity, during
which the low-intensity input wave gets amplified by absorbing energy from the high-intensity pump
wave. The rate and the amount of energy that can be transferred depends on the nonlinearity of the
interaction medium. Hence, the gain of a parametric amplification process depends heavily on the length
of the interaction medium. The required interaction medium length for high optical gain is usually on
the order of centimeters.

There is an abundance of studies that have investigated the resonant nonlinear optical response of
various materials via several experimental techniques [1–12]. These materials can be used for enhancing
the optical gain that is attainable from a nonlinear wave mixing process. In fact, in the last two decades,
there have been numerous studies that focused on enhancing the gain of optical parametric amplifiers.
These studies [13–32] have mostly been experimental and have usually focused on the discovery, design,
and employment of super-nonlinear media for optical gain enhancement. One experimental study in
particular [21] has shown that a gain factor on the order of 105 is possible in the microscale via a

Received 22 October 2020, Accepted 7 December 2020, Scheduled 16 December 2020
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specially designed interaction medium. Another experimental study [18] has demonstrated a remarkable
wideband gain in a 5 millimeter long, highly nonlinear interaction medium. However, to this date,
there is no study that has made a direct attempt to maximize the gain factor using smart algorithms
via computational approach. Smart algorithms can be employed in maximizing the gain factor of an
input wave that is amplified via nonlinear wave mixing process as certain signal processing or machine
learning algorithms. In this study, we will use a constrained nonlinear programming approach based
on the Fletcher-Reeves algorithm that is both computationally cost efficient and has rapid convergence,
by embedding it into the finite difference time domain (FDTD) discretization of the wave equation and
the associated equations for the components of the polarization density corresponding to the resonance
(emission) frequencies of an arbitrary interaction medium. The update equations of the algorithm will
be solved in concurrence with the discretized equations.

Enhancing the optical gain of the nonlinear wave mixing process in the micro and nanoscale is a
crucial scientific problem as its achievement can enable various new technologies based on micro and
nanotechnology, such as novel ultra-wideband optical antennas, super-efficient harmonic generators, and
small-scale optical ablation devices. It is also an important issue for creating more powerful macroscale
high-power optical devices that can be used for many different purposes [34, 35, 37, 38].

In order to simplify the description of the whole procedure, the problem will be investigated in a
plain Fabry-Perot type micro-resonator. We will start our analysis by reestablishing the mathematical
background of optical amplification via nonlinear wave mixing. Then we will reintroduce and integrate
the Fletcher-Reeves algorithm into the mathematical formulation of the nonlinear wave mixing process.
The resonator parameters and the constraints imposed by the source device, based on the frequency
tunability of the excitation pulses, will be the input parameters of the algorithm. The partial differential
equations that model the parametric amplification will be discretized by the finite difference time domain
(FDTD) method and will be solved iteratively along with the Fletcher-Reeves optimization process. The
results will be presented through detailed computer simulations, and the employed computational model
will be validated by the well-known experimental results of the sum-frequency generation process. The
constructed computational model will be summarized in the conclusion.

2. METHODS

The Fabry-Perot micro-resonator that is modeled in this study has an optical isolator at the input port
and a band-pass filter at the output port. The interaction medium (gain medium) is assumed to have
multiple resonances. For an arbitrary interaction medium with N resonance (emission) frequencies,
the mathematical description of the OPA process and the definitions of the involved parameters are
explained as below:

Polarization decay rates of the medium of interaction : {γ1, γ2, . . . , γN}
Resonance (emission) frequencies of the medium of interaction : {f1f2, . . . , fN}

Ep : Pump wave electric field intensity, Pp : Total polarization density induced by the pump wave

Pp,l : Pump wave induced polarization density for the lth emission frequency of the medium

Ein : Input wave electric field intensity, Pin : Total polarization density induced by the input wave

Pin,l : Input wave induced polarization density for the lth emission frequency of the medium

ε∞ : Background permittivity of the medium

σ : Electrical conductivity of the medium, μ0 : Free space permeability

Ql : Electron density corresponding to the lth resonance frequency, Q : Total electron density

ξl : Resonance probabilities (oscillator strengths)

The propagation of the pump wave (excluding the presence of the input wave) is described by
Equations (1)–(2) [33, 34]. Equation (1) represents the electric field wave equation of the pump wave,
and Equation (2) represents the associated polarization density components induced for each resonance
frequency. Note that each resonance frequency is associated with a different polarization decay rate,
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electron density, and polarization density. Therefore, the total polarization density in Equation (1) is
the sum of all polarization densities indicated in Equation (2) (Pp = Pp,1 + Pp,2 + . . .+ Pp,N )
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Quantum mechanics dictates that the sum of all resonance probabilities is equal to 1 [33–35]. Therefore,
for a given electromagnetic wave in the medium of propagation, the relation between the resonance
probabilities and the associated polarization density components at each resonance is summarized by
the following equations ∑N

l=1
ξl = 1, (3)
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l=1
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∑N

l=1
ξlpl (4)

where pl is the induced electric dipole moment contributed by the lth resonance frequency of the medium.
When the low-intensity input wave and high-intensity pump wave are present in the same interaction

medium, the total wave and associated polarization densities can be expressed by the following equations
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By subtracting Equations (1)–(2) from Equations (5)–(6), we get the equations that describe the
propagation of the low-intensity input wave under the presence of the high-intensity pump wave as
follows
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During the interaction of the two waves, an idler harmonic that mediates the amplification of the input
wave is generated via difference frequency generation. The intensity of the idler harmonic reinforces
input wave amplification, and its time variation is embedded in the time variation of the input wave in
Equations (8)–(9).

The configuration of the micro-resonator that will be used in the numerical experiments is as
illustrated in Figure 1. The pump wave and low-intensity input wave will be excited (originated) from
the optical isolator wall, which is the left wall of the resonator. The right cavity wall is an optical
bandpass filter with a passband center frequency that is equal to the desired output frequency of the
amplified input wave. The thicknesses of the resonator walls are much larger than 20 nanometers, below
which necessitates quantum treatment [39]; therefore, the use of classical concepts will suffice here. The
input wave electric field amplitude will be normalized to 1V/m at t = 0 sec, and the pump wave electric
field will have a very high amplitude in order to induce nonlinearity and transfer energy to the input
wave.
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Figure 1. Micro-resonator configuration (Fabry-Perot type) to be used in the numerical simulations.

As we can see from Equations (8)–(9), the pump wave induced polarization density Pp is coupled
to the input wave polarization density Pin. Therefore, the polarization density induced by the pump
wave acts as a coupling coefficient arising from the nonlinearity.

We define the pump wave at the excitation point x = xinput to be a combination of M intense
ultrashort pulses;

Ep (x = xinput, t) =
M∑
i=1

Ai cos (2πνit+ ψi) (u (t)− u (t−ΔT i)) V/m (10)

u(t) : Unit step function, ΔT : Pulse duration, A : Amplitude, ν : Excitation frequency

The input wave to be amplified is expressed at the excitation point x = xinput as
Ein(x = xinputt) = Ain cos (2π (νin) t+ ψin) (u (t)− u (t−ΔT in)) V/m (11)

To maximize the gain (or amplitude) of the amplified input wave, we will tune the frequencies
{νi}i=1,...,M of the ultrashort intense excitation pulses via nonlinear programming using the Fletcher-
Reeves algorithm. This algorithm is a nonlinear conjugate gradient algorithm that is well-suited for
solving nonlinear programming problems. The cost function F is the absolute value of the input wave
spectral density around the desired frequency v = νtarget in a given bandwidth Δv, as indicated in
Equation (12)
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Since our problem is a constrained maximization problem, where the frequencies {νi}i=1,...,M can only
be tuned in a certain frequency range νmin ≤ {νi}i=1,...,M ≤ νmax, we update the cost function by adding
penalty functions to decrease the cost function in case of violation of the constraints, thereby enforcing
the satisfaction of the constraints for a maximization based nonlinear programming problem. After the
addition of the penalty terms, the cost function for the constrained maximization problem becomes
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{L1L2}: Positive valued penalty constants, δiζi: Penalty coefficients

δi =
{

0 if νi < vmax

> 0 if νi > vmax

}
, ζi =

{
0 if νi > vmin

> 0 if νi < vmin

}
(14)

Now that the equations that represent our parametric wave amplification problem are defined, and the
corresponding cost function is identified, the optimization algorithm can be introduced. The Fletcher-
Reeves algorithm, which is a very convenient algorithm for solving nonlinear programming problems [40],
will be used as the optimization algorithm for input wave gain-factor maximization and is explained as
follows:

Algorithm: (Fletcher-Reeves)
Given the initial ultrashort pulse frequencies v0, evaluate the cost function and its gradient:

F0 = F (v0), ∇F0 = ∇F (v0). Choose the initial search direction as the identity matrix: p0= I.
Set F0 ← ∇F0, k ← 0, and continue the iteration until the gradient is nonzero.
while ∇Fk �= 0
For each update k, compute the step size αk using the backtracking line search. Choose 0 < c < 1,

0 < ρ < 1, and αk > 0. The backtracking line search enables the satisfaction of the Wolfe conditions [36]
and ensures the stability of the learning rate in a given optimization algorithm [40, 41].

while F (vk + αkpk) ≤ F (vk) + cαk∇Fk
Tpk (Sufficient decrease condition [36, 42])

αk ← αkρ (Keep decreasing αk until the sufficient decrease condition is satisfied)

end (Terminate the backtracking line search)
set vk+1 = vk + αkpk, and evaluate ∇Fk+1

βk+1 =
∇Fk+1

T∇Fk+1

∇Fk
T∇Fk

, pk+1←−∇Fk+1 + βk+1pk, k ← k + 1;

end (Terminate the Fletcher-Reeves algorithm)
The whole procedure for the maximization of the input wave gain-factor, based on the micro-

resonator and pump wave parameters, can be summarized as follows
Optimization parameters: ν = [ν1, ν2, . . . , νM ], Cost function to be maximized: F (ν) =

|Ein(ν = νtarget)|
Constraints: νmin ≤ ν ≤ νmax

Equations: M optimization parameters, 2N + 2 differential equations, 5 update equations
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∇Fk = Ein (vk) , βk =
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, pk←−∇Fk + βkpk−1, k ← k + 1, l = 1, . . . , N (21)

FDTD Discretization : Equations (17)–(20) are discretized and solved using the finite difference
time domain method at every update of the nonlinear programming process. Since the problem is
nonlinear, the stability condition is stricter; therefore, it is the best to choose the temporal and spatial
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sampling periods (Δt,Δx) as small as possible for more accurate solutions. The discretization of
Equations (17)–(20) is performed respectively as follows

Equations for the pump wave:

Ep,k (i+ 1, j) − 2Ep,k (i, j) +Ep,k (i− 1, j)
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Equations for the input wave:
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Pp,k = Pp1,k+Pp2,k + . . .+ PpN,k, Pin,k = Pin1,k + Pin2,k + . . .+ PinN,k (26)

x: Space point, t: Time instant, k: update number, Ek(x, t) = Ek(iΔx, jΔt) → Ek(i, j)

Ep,k : Pump wave electric field at update k, Ein,k : Input wave electric field at update k

The summary of the whole process is illustrated as a flowchart diagram in Figure 2 given below.

Figure 2. The flowchart summary of the nonlinear programming problem.

3. SIMULATION RESULTS

The configuration of the micro-resonator, which will be studied in the upcoming simulation results, is
presented as in Figure 3. The left wall of the resonator is an optical isolator that allows an optical pulse
to pass from its left side and blocks any transmission of the pulse from its right side. The right cavity
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Figure 3. Configuration of the cavity.

wall is an optical bandpass filter that allows the transmission of the input wave at the desired frequency
and reflects all the other frequency components. The cavity walls are assumed to yield no reflection
loss, and the cavity round-trip loss here is solely due to the polarization damping coefficients of the gain
medium. This is an accurate assumption because the effect of the polarization damping loss is much
more significant than the reflection loss [20], as the polarization damping loss decreases both the rate
of electric energy coupling and the intracavity stored electric energy, which are critical for input wave
OPA gain [37].

The general conditions and configuration of the presented numerical simulations is outlined below

Optical isolator location (left wall) : x = 0µm; Bandpass filter (right wall) location : x = 10µm

Interaction medium range : 0µm < x < 10µm; Number of electrons per volume : N = 3.5× 1028/m3

Atomic diameter : d = 0.3nanometers

Optical isolator condition: Full reflection at x = xinput from the inside of the cavity

Γ(x = xinput −Δx, t)=0, Γ(x = xinput + Δx, t)=1, (Γ : Reflection coefficient)

Optical bandpass filter condition: Frequency dependent reflection at x = xoutput; |Γ(ν)| =

1− e−( (ν−ν′)√
2Δν2 THz

)
2

(Full transmission aroundν = ν ′); Δν: Transmission bandwidth of the bandpass filter
Initial conditions: (Prime sign represents the time derivative)

Pp(x, 0) = P ′
p(x, 0) = Ep(x, 0) = E′

p(x, 0) = Pin(x, 0) = P ′
in(x, 0) = Ein(x, 0) = E′

in(x, 0) = 0

Absorbing boundary condition (perfectly matched layer): Gradually increased electrical
conductance for the effective termination of the computational domain

σ (x) =
{

(x− (L−Δ))σ0 , (L−Δ) ≤ x < L

}
, for L = 15µm, Δ = 2.5µm, σ0 = 4.5× 108 S/m

The value of σ0 is determined based on the thickness of the perfectly matched layer using the given
formula

σ0 =
Center wavelength of the simulation spectral band

Δx2 (27)



184 Aşırım and Yolalmaz

Note that the absorbing boundary condition is required to terminate the computational domain from
the right side. Since the left side is already a closed boundary due to the full reflection from the optical
isolator, an absorbing boundary condition is not imposed from the left side.

3.1. Simulation1: Blue Light Amplification

Problem definition: Identifying the optimal excitation frequencies of the ultrashort pulses of the
pump wave {νi}i=1,2 in order to maximize the absolute value of the peak amplitude of the input wave at
640 THz (|Ein(vin = 640THz)|) inside the cavity, for 100THz < {νi}i=1,2 < 400 THz, and for µm < x <
10µm, 0 ≤t ≤ 15 ps. The parameters of the micro-resonator and the parameters of the input and pump
waves at the excitation point are presented below Ein(x = xinput = 2.5µm, t)=1× sin(2π(6.4×1014)t) V

m , 0 ≤
t ≤ 15 ps, Ep(x = xinput = 2.5µm, t) =

2∑
i=1

Ai cos(2πνit+ ψi)(u(t) − u(t−ΔT i)) V/m

A1 = 1× 108, A2 = 8 × 107, ΔT 1 = 5ps, ΔT 2 = 8ps; Spatial and temporal parameters :
0 ≤ x ≤ 10µm, 0 ≤ t ≤ 15 ps, Cavity resonances : fr = {3.8 × 1014 Hz, 5.4 × 1014 Hz, 7.5 ×
1014 Hz}; Damping rates of the cavity : γ = {5×1011 Hz, 1×1012 Hz, 3×1012 Hz; Resonator (oscillator)
strengths = ξ = f 3

9 ,
4
9 ,

2
9}, Relative permittivity : (εr) = 10 (μr = 1).

Since we want the input wave intensity to be maximized around 640 THz (blue light emission),
the unconstrained cost function is determined as F = Gain = |Ein(vin = 640THz)| =
| ∫ 6.4×1014+Δν

6.4×1014−Δν {
∫ ΔT
0 {Ein(x = x′, t)e−i(2πΩ)t}dt}ei(2πΩ)tdΩ|, ΔT = 15ps(6.4 × 1014 − Δν)Hz < Ω <

(6.4 × 1014 + Δν)Hz, Δν = 10 THz.
Optical bandpass filter condition: Frequency dependent reflection at x = 10µm. The passband

of the filter is centered at 640 THz (blue light filter) and has a Gaussian frequency selectivity curve with
a bandwidth of 20 THz. ∣∣Γ (

ν ′
)∣∣ = 1− e−(

(ν′−640THz)√
200 THz

)
2

Constrained cost function: Since the allowed range of ultrashort excitation frequencies lies in
the range 100THz < {νi}i=1,2 < 400 THz, the cost function is modified to include the penalty terms for
constraint breaches. Therefore, the cost function to be maximized for this problem is finalized as

F (ν1, ν2) = |Ein (vin = 640THz)| − δ1 (v1 − 400THz)2 − δ2 (100THz − v1)2
−δ3 (v2 − 400THz)2 − δ4 (100THz − v2)2;

Parameter values for {δi}i=1,2,3,4 : ζ = 1.5, ΔΩ = 10THz, such that

δ1 =

⎧⎪⎨
⎪⎩

0, if v1 ≤ 400THz(
1− 1

ζ

)
(ΔΩ)2

|Ein (vin = 640THz)| , if v1 > 400THz

⎫⎪⎬
⎪⎭ ,
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)
(ΔΩ)2

|Ein (vin = 640THz)| , if v1 < 100THz

⎫⎪⎬
⎪⎭
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0 if v2 ≤ 400THz(
1− 1

ζ

)
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|Ein (vin = 640THz)| , if v2 > 400THz

⎫⎪⎬
⎪⎭ ,
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0 if v2 ≥ 100THz(
1− 1
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)
(ΔΩ)2

|Ein (vin = 640THz)| , if v2 < 100THz

⎫⎪⎬
⎪⎭

ζ = Reduction factor, ΔΩ : Deviation from the max /min allowable frequency
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which indicates that the cost function is reduced by (100 − 100
ζ )% for a frequency deviation of ΔΩ, for

each penalty coefficient. Based on this configuration, the maximization process of the cost function is
summarized in Table 1.

Table 1. Optimization process (Fletcher-Reeves algorithm).

ν1 ν2 Gainmax We,p (J/m3) Pp(C/m2) k (iteration #)
270 THz 260.0 THz 1.23 1.5× 107 0.12 1

241.6 THz 252.8 THz 1.29 2.9× 107 0.13 5
218.9 THz 278.2 THz 41.84 4.4× 107 0.13 9
238.5 THz 288.1 THz 117.51 6.9× 107 0.14 13
204.5 THz 302.2 THz 3255.34 9.2× 107 0.16 17
198.4 THz 311.6 THz 5287.14 1.5× 108 0.16 21
172.4 THz 288.5 THz 1.46× 104 2.8× 108 0.18 25
187.0 THz 323.1 THz 2.16× 105 8.8× 108 0.20 29
156.6 THz 349.7 THz 8.73× 105 9.7× 108 0.22 33
164.8 THz 352.4 THz 5.68× 106 1.6× 109 0.24 37
162.3 THz 351.3 THz 3.30× 107 3.0× 109 0.26 40
161.7 THz 350.9 THz 4.7 × 107 3.1× 109 0.27 42

As illustrated in Table 1, the gain factor of the input wave at the desired frequency is proportional
to the intracavity electric energy density We,p and the polarization density Pp induced by the pump
wave. Therefore, we conclude that the input wave gain-factor maximization problem is equivalent to the
concurrent maximization of the intracavity electric energy density and the corresponding polarization
density, created by the pump wave. This is expected, as the accumulated polarization density signifies
the strength of nonlinear coupling and is the sole parameter or mechanism that enables the transfer of
energy from the energized cavity to the input wave (see Equations (8), (9)). Hence, maximizing the
electric energy alone is not sufficient to amplify the input wave, and the simultaneous maximization of
the coupling coefficient (pump wave induced polarization density) is also necessary. Both the intracavity
electric energy density and the polarization density induced by the pump wave can be maximized by
maximizing the nonlinear constructive interference of the pump wave. Therefore, in its essence the
algorithm seeks to maximize nonlinear constructive interference based on the excitation frequencies of
the ultrashort pulses. The algorithm is especially useful in cases where the cavity is energized by many
ultrashort pulses, such as the output pulses of a mode-locked laser. This is because as the number of
ultrashort pulses increases, the algorithm has more freedom for a fine tuning, and a given gain factor
for the input wave can be achieved at a lower ultrashort pulse mean-amplitude. On the other hand,
as the number of the ultrashort pulses increases, the algorithm takes much more time to maximize the
gain factor of the input wave. In this simulation with two ultrashort pulses, a high-gain amplification
is achieved at the 42nd update.

Figure 4 displays the amplification of the input wave around the desired frequency (quasi-
monochromatic with a bandwidth of 20 THz) corresponding to the optimal frequencies of the ultrashort
pulses which leads to the optimal pump wave excitation. A very high gain-factor is achieved at the
filter output after 15 picoseconds. The amplitude of the input wave increases significantly after t = 10
picoseconds due to the exponential rate of amplification, in compliance with the theoretical results
reported in [34, 35].

3.2. Simulation2: Infra-Red (IR) Light Amplification

Problem definition: Identification of the optimal excitation frequency of the pump wave νp in order to
maximize the absolute value of the peak amplitude of the input wave at 100 THz (|Ein( vin = 100THz)|)
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Figure 4. (a) Amplitude variation of the input wave w.r.t time at the bandpass filter output. (b)
Input wave intensity spectral density measured at the bandpass filter output.

inside the micro-resonator, for a constrained tuning range of 100THz < νp < 400 THz, for µm < x <
10µm, 0 ≤ t ≤ 20 ps. The parameters of the micro-resonator and the parameters of the input and pump
waves at the excitation point are presented below (note that in this case the pump wave excitation is a
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single pulse, whose pulse duration is equal to the pulse duration of the input wave)

Ein(x = xinput = 2.5µmt) = 1× sin
(
2π

(
1× 1014

)
t
)

V/m,

Ep (x = xinput = 2.5µm, t) = 1.8× 108 cos (2π(vp)t+ ψp) V/m,
Spatial and temporal parameters : 0 ≤ x ≤ 10µm, 0 ≤ t ≤ 20 ps, ψp = 0

Cavity resonances : fr = {1.1 × 1015 Hz, 1.5 × 1015 Hz,
Damping rates of the cavity : γ = {2× 1012 Hz, 5× 1012 Hz,

Resonator (oscillator) strengths = ξ = f
1
2
,

1
2
g,

Relative permittivity : (εr) = 12 (μr = 1)

Since we want the input wave intensity to be maximized around 100 THz (IR light emission), the
unconstrained cost function is determined as

F = |Ein (vin = 100THz)| =
∣∣∣∣∣
∫ 1×1014+Δv

1×1014−Δv

{∫ ΔT

0
{Ein(x = x′, t)e−i(2πΩ)t}dt

}
ei(2πΩ)tdΩ

∣∣∣∣∣
ΔT = 20ps

(
1× 1014 −Δv

)
Hz < Ω <

(
1× 1014 + Δv

)
Hz, Δv = 5THz

Optical bandpass filter condition: Frequency dependent reflection at x = 10µm. The passband
of the filter is centered at 100 THz (IR light filter) and has a Gaussian frequency selectivity curve with
a bandwidth of 10 THz.

∣∣Γ (
v′

)∣∣ = 1− e−
(

(v′−100 THz)√
50 THz

)2

Constrained cost function: Since the allowed pump wave frequencies lie in the range 100THz < νp <
400THz, the cost function is modified to include the penalty terms for constraint breaches. Therefore,
the cost function to be maximized for this problem is finalized as

F (vp) = |Ein (vin = 100THz)| − δ1 (vp − vmax)
2 − δ2 (vmin − vp)

2,

Parameter values for {δi}i=1,2 : ζ = 2, ΔΩ = 3THz, such that

δ1 =

⎧⎪⎨
⎪⎩

0, if vp ≤ 400THz(
1− 1

ζ

)
(ΔΩ)2

|Ein (vin = 100THz)| , if vp > 400THz

⎫⎪⎬
⎪⎭ ,

δ2 =

⎧⎪⎨
⎪⎩

0, if vp ≥ 100THz(
1− 1

ζ

)
(ΔΩ)2

|Ein (vin = 100THz)| , if vp < 100THz

⎫⎪⎬
⎪⎭

Based on this configuration, the maximization process of the cost function is summarized in Table 2.
From Table 2, we can see that the gain factor of the input wave at the desired frequency is proportional
to the intracavity electric energy density We,p and the polarization density Pp induced by the pump
wave. Once again, we deduce that the input wave gain-factor maximization problem is equivalent to the
concurrent maximization of the intracavity electric energy density and the corresponding polarization
density, created by the pump wave. The highest gain factor is achieved at the 28th update, indicating
a fair convergence rate.

Figure 5 displays the amplification of the input wave around the desired frequency (quasi-
monochromatic with a bandwidth of 10 THz) for the optimal excitation frequency of the pump wave. A
very high gain-factor is achieved at the filter output after 20 picoseconds. The amplitude of the input
wave increases significantly after t = 10 picoseconds, when the accumulated intracavity energy becomes
sufficiently high.
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Table 2. Optimization process (Fletcher-Reeves algorithm).

νp Gainmax We,p ( J
m3 ) Ppump( C

m2 ) k (iteration #)

225.0 THz 13.2 2.4× 107 0.14 1

257.0 THz 17.7 2.5× 107 0.16 4

260.1 THz 83.4 2.7× 107 0.17 7

262.5 THz 196.0 4.1× 107 0.19 10

264.6 THz 1271.6 4.9× 107 0.20 12

259.5 THz 6350.8 6.6× 107 0.22 14

227.3 THz 2.6 × 104 9.3× 107 0.23 16

83.3 THz 5.3 × 104 1.1× 108 0.25 18

143.3 THz 3.7 × 105 2.8× 108 0.26 20

158.0 THz 1.2 × 106 3.7× 108 0.28 22

166.9 THz 8.4 × 106 1.0× 109 0.29 24

152.9 THz 4.1 × 107 2.2× 109 0.30 26

157.4 THz 1.5 × 108 3.2× 109 0.31 28

4. MODEL VALIDATION

The accuracy of the computational model presented in this study is tested using the available
experimental formula for harmonic generation by nonlinear wave mixing, which involves the generation
of a new harmonic (angular frequency: ω3) through the mixing of two monochromatic high-intensity
waves (with angular frequencies ω1 and ω2) in a strongly nonlinear medium, such that the newly
generated harmonic is the sum of the two intermixed harmonics (ω3 = ω1 + ω2). For a simulation
duration of 0 ≤ t ≤ tmax, the numerical expression for sum harmonic (frequency) generation efficiency
is given as

ηnumerical =
Intensity of the newω3 harmonic of the total wave atx = x′′

Intensity of theω2 harmonic of the total wave at x = x′′

=

∣∣∣∣
∫ ΔT

0
{E(x = x′′, t)e−i(2πf3)t}dt

∣∣∣∣
2

∣∣∣∣
∫ ΔT

0
{E(x = x′′, t)e−i(2πf2)t}dt

∣∣∣∣
2 (28)

Since both waves are of high-intensity, and our aim is not amplification, we can treat the total wave like
a pump wave and obtain the numerical efficiency (Equation (30)) by solving the discretized equations
for the pump wave (Equations (24)–(25)). The experimental formula for sum-harmonic generation
efficiency is given as

ηexperimental =
ω3

ω2

(
sin

√
2d2η3ω2

3

(
cnε0A2

2

)
L2

)2

[34, 35, 43–45] (29)

d =Strength of Nonlinearity, η = Intrinsic impedance, n =Refractive index, A2 =Amplitude of the
pump wave, A1 =Amplitude of the signal, L = Interaction (medium) length, ω3 = ω1 + ω2 =Frequency
of the sum harmonic.

In order to compute and compare the numerical and experimental efficiencies, a 180 THz high-
intensity wave E2 is intermixed with a 120 THz high-intensity wave E1 (see Figure 6). The amplitudes
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Figure 5. (a) Amplitude variation of the input wave w.r.t time at the bandpass filter output. (b)
Input wave intensity spectral density measured at the bandpass filter output.

of the waves are A2 and A1, respectively, and the parameters of the medium are as given below

E2(x = 2.6µm t) = A2 × sin
(
2π

(
1.8× 1014

)
t+ ϕ2

)
V/m;

E1(x = 2.6µm t) = A1 × sin
(
2π

(
1.2× 1014

)
t+ ϕ1

)
V/m (ϕ1 = 0, ϕ2 = 0);

Spatial and temporal simulation parameters : 0 ≤ x ≤ 10µm, 0 ≤ t ≤ 30 ps;
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Figure 6. Configuration for sum-frequency generation.

Resonance frequencies of the medium : fr = {1× 1015 Hz, 1.2 × 1015 Hz, 1.5× 1015 Hz;
Damping (decay) rates of the medium : γ =

{
3× 1012 Hz, 1× 1012 Hz, 2× 1012 Hz

}
;

Permittivity of the medium (ε∞) = 1 + χ = 12 (μr = 1)

The values of each parameter involved in the process are as stated below:

ω2 = Second wave angular frequency = (2π × 180)THz,
ω1 = First wave angular frequency = (2π × 120)THz,
L = Cavitymedium length = 3.33µm,

ω3 = Sum harmonic angular frequency = 2π × 300THz, n =
√

12,
A2 = Amplitude of the second wave(Swept from 1× 108 V/m to 2.5× 109 V/m),
A1 = Amplitude of the first wave = A2/10,

Resonator (oscillator) strengths = ξ =
{

1
3
,

1
3
,

1
3

}

The nonlinearity coefficient is estimated by equating the numerical and theoretical efficiencies for
a sample pump wave amplitude (preferably at a very high pump wave amplitude for a more reliable
estimation). At a sample pump wave amplitude of A2 = 109 V/m, the numerical efficiency is found as
ηnumerical = 3.7 × 10−4. Based on the given parameters, by equating the numerical and experimental
efficiencies at the sample pump wave amplitude of A2 = 109 V/m, we can solve the nonlinearity
coefficient;

ηexp =
ω3

ω2

(
sin

√
2dest

2η3ω2
3(cnε0A

2
2)L2

)2

= ηnum = 3.7 × 10−4,

from which we solve the estimated nonlinearity coefficient as dest = 3.31 × 10−23. Since this estimated
nonlinear coefficient is based on a single sample pump wave amplitude, we must double check its accuracy
by comparing the efficiencies for some other sample pump wave amplitudes. This comparison is shown
in Table 3. Since the mean error percentage is low, the nonlinearity coefficient is accurately estimated.

Finally, we compare the numerical and experimental efficiencies for a much larger sample of pump
wave amplitudes swept from 1 × 108 V/m to 2.5 × 109 V/m in increments of 0.5 × 108 V/m. The
comparison is plotted in Figure 7. The results are in good agreement, and the mean error percentage
is below 0.7%.
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Table 3. Comparing numerical and experimental sum-harmonic generation efficiencies for the
nonlinearity coefficient of dest = 3.31 × 10−23 C/V2.

Pump wave Amplitude Experimental efficiency Numerical efficiency Error percentage
1× 108 V/m 4.16×10−6 4.22×10−6 1.4%
3× 108 V/m 3.36×10−5 3.40×10−5 1.2%
5× 108 V/m 9.25×10−5 9.27×10−5 0.22%
1× 109 V/m 3.68×10−4 3.70×10−4 0.54%

1.5× 109 V/m 8.32×10−4 8.25×10−4 0.85%
2× 109 V/m 1.48×10−3 1.48×10−3 0.31%

2.5× 109 V/m 2.31×10−2 2.33×10−2 0.96%

Figure 7. Comparison of sum-harmonic generation efficiencies for f3 = 300 THz and d = 3.31 ×
10−22 C/V2.

5. CONCLUSION

Here we have presented an efficient algorithm that maximizes the energy transfer from the pump
wave to the input wave and enable the amplification of an input wave within a Fabry-Perot micro-
resonator via optical parametric amplification. In a simple micro-resonator with an arbitrary interaction
medium, the intense excitation pulses that comprise the pump wave can be tuned or programmed to
maximize the optical gain of an input wave through the nonlinear wave mixing process. The Fletcher-
Reeves algorithm can be employed for tuning the frequencies of the excitation pulses generated by
the source device, based on the configuration of the optical micro-resonator through a micro-controller
interface between the micro-resonator and the source device. The algorithm allows for high-gain wave
amplification at a desired optical frequency and at the minimal threshold pump wave energy, for a
given micro-resonator configuration with an interaction medium of multiple resonance frequencies. The
computational results of our formulations match the well-known experimental results in the context of
sum harmonic generation efficiency with a 99% accuracy. The presented mathematical formulations
can be used to design microscale optical parametric amplifiers to be employed in integrated photonics,
MEMS devices, and optical communications.
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