1. Liu, Y., K. Li, Y. Jia, Y. Hao, S. Gong, and Y. Jay Guo, "Wideband RCS reduction of a slot array antenna using polarization conversion metasurfaces," IEEE Trans. Antennas Propag., Vol. 64, No. 1, 326-331, 2018.
2. Huang, C., W. Pan, X. Ma, and X. Luo, "Wideband radar cross section reduction of a stacked patch array antenna using metasurface," IEEE Antennas Wireless Propag. Lett., Vol. 14, 1369-1372, 2015.
3. Krishnamoorthy, K., B. Majumder, J. Mukherjee, and K. P. Ray, "Low RCS and polarization reconfigurable antenna using cross slot based metasurface," IEEE Antennas Wireless Propag. Lett., Vol. 14, 1638-1641, 2015.
4. Liu, Y., Y. Hao, K. Li, and S. Gong, "Wideband and polarization independent radar cross section reduction using holographic metasurface," IEEE Antennas Wireless Propag. Lett., Vol. 15, 1028-1031, 2016.
5. Hong, T., S. Wang, Z. Liu, and S. Gong, "RCS reduction and gain enhancement for the circularly polarized array by polarization conversion metasurface coating," IEEE Antennas Wireless Propag. Lett., Vol. 18, No. 1, 167-171, 2019.
6. Zhang, W., Y. Liu, S. Gong, J. Wang, and Y. Jiang, "Wideband RCS reduction of a slot array antenna using phase gradient metasurface," IEEE Antennas Wireless Propag. Lett., Vol. 17, No. 12, 2193-2197, Dec. 2018.
7. Tran, X. L., J. Vesely, and F. Dvorak, "Optimization of nonuniform linear antenna array topology," Information and Communication Technologies and Services, Vol. 16, No. 3, 341-349, Sep. 2018.
8. Zakaria, Y. and L. Ivanek, "Propagation modelling of path loss models for wireless communication in urban and rural environments at 1800 GSM frequency band," Information and Communication Technologies and Services, Vol. 14, No. 2, 139-144, Jun. 2016.
9. Zhuang, Y., G. Wang, J. Liang, T. Cai, X. Tang, T. Guo, and Q. Zhang, "Random combinatorial gradient metasurface for broadband wide-angle and polarization independent difusion scattering," Scientific Reports, Vol. 7, 16560, Nov. 2017.
10. Kim, S. H. and Y. J. Yoon, "Wideband radar cross-section reduction on checkerboard metasurfaces with surface wave suppression," IEEE IEEE Antennas Wireless Propag. Lett., Vol. 18, No. 5, 896-900, 2019.
11. Lu, Y., J. Su, J. Liu, Q. Guo, H. Yin, Z. Li, and J. Song, "Ultrawideband monostatic and bistatic RCS reductions for both copolarization and cross polarization based on polarization conversion and destructive interference," IEEE Trans. Antennas Propag., Vol. 67, No. 7, 4936-4941, Jul. 2019.
12. Li, Y., J. Zhang, S. Qu, J. Wang, H. Chen, Z. Xu, and A. Zhang, "Wideband radar cross section reduction using two-dimensional phase gradient metasurfaces," Appl. Phys. Lett., Vol. 104, 221110, 2014.
13. Zhuang, Y., G. Wang, T. Cai, and Q. Zhang, "Design of bifunctional metasurface based on independent control of transmission and reflection," Optics Express, Vol. 26, No. 3, 3594-3603, Feb. 2018.
14. Song, Y., J. Ding, C. Guo, Y. Ren, and J. Zhang, "Ultra broadband backscatter radar cross section reduction based on polarization insensitive metasurface," IEEE Antennas Wireless Propag. Lett., Vol. 15, 329-331, 2016.
15. Joshi, A. and R. Singhal, "Vertex-fed hexagonal antenna with low cross-polarization levels," Information and Communication Technologies and Services, Vol. 17, No. 2, 138-145, Jun. 2019.
16. Mishra, B., V. Singh, and R. Singh, "Gap coupled dual-band petal shape patch antenna for WLAN/WiMAX applications,", Vol. 16, No. 2, 185-198, Jun. 2018.
17. Zhang, L., X. Wan, S. Liu, J. Yin, Q. Zhang, H. Wu, and T. Cui, "Realization of low scattering for a high-gain Fabry-Perot antenna using coding metasurface," IEEE Trans. Antennas Propag., Vol. 65, No. 7, 3374-3383, Jul. 2017.
18. Zheng, Y., J. Gao, Y. Zhou, X. Cao, H. Yang, S. Li, and T. Li, "Wideband gain enhancement and RCS reduction of Fabry-Perot resonator antenna with chessboard arranged metamaterial superstrate," IEEE Trans. Antennas Propag., Vol. 66, No. 2, 590-599, Feb. 2018.
19. Li, K., Y. Liu, Y. Jia, and Y. J. Guo, "A circularly polarized high gain antenna with low RCS over a wideband using chessboard polarization conversion metasurfaces," IEEE Trans. Antennas Propag., Vol. 65, No. 8, 4288-4292, Aug. 2017.
20. Ren, J., W. Jiang, K. Zhang, and S. Gong, "A high-gain circularly polarized fabry-perot antenna with wideband low-RCS property," IEEE Antennas Wireless Propag. Lett., Vol. 17, No. 5, 853-856, May 2018.
21. Long, M., W. Jiang, and S. Gong, "Wideband RCS reduction using polarization conversion metasurface and partially reflecting surface," IEEE Antennas Wireless Propag. Lett., Vol. 16, 2534-2537, 2017.
22. Zhou, Y., X. Cao, J. Gao, S. Li, and Y. Zheng, "In-band RCS reduction and gain enhancement of a dual-band PRMS-antenna," IEEE Antennas Wireless Propag. Lett., Vol. 16, 2716-2720, 2017.
23. Zhang, L., C. Liu, C. Ni, M. Kong, and X. Wu, "Low-RCS, circular polarization, and high-gain broadband antenna based on mirror polarization conversion metasurfaces," International Journal of Antennas and Propagation, Vol. 2019, 6098483, Aug. 2019.
24. Ge, Y., Z. Sun, Z. Chen, and Y. Chen, "A high-gain wideband low-profile Fabry-Perot resonator antenna with a conical short horn," IEEE Antennas Wireless Propag. Lett., Vol. 15, 1889-1892, 2016.
25. Sharmaa, A., D. Gangwarb, B. K. Kanaujiac, and S. Dwari, "Gain enhancement and RCS reduction of CP patch antenna using partially reflecting and absorbing metasurface," Electromagnetics, 2019.
26. Xie, P., G. Wang, H. Li, J. Liang, and X. Gao, "Circularly polarized Fabry-Perot antenna employing a receiver-transmitter polarization conversion metasurface," IEEE Trans. Antennas Propag., Vol. 68, No. 4, 3213-3218, 2020.
27. Trentini, G. V., "Partially reflecting sheet arrays," IEEE Trans. Antenna Propag., Vol. 4, No. 4, 666-671, Oct. 1956.
28. Foroozesh, A. and L. Shafai, "Investigation into the effects of the reflection phase characteristics of highly-reflective superstrates on resonant cavity antennas," IEEE Trans. Antennas Propag., Vol. 58, 3392-3396, Oct. 2010.