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Wideband RCS Reduction of High Gain Fabry-Perot Antenna
Employing a Receiver-Transmitter Metasurface

Peng Xie, Guang-Ming Wang*, Hai-Peng Li, Ya-Wei Wang, and Binfeng Zong

Abstract—This paper presents a high gain Fabry-Perot antenna with radar cross section (RCS)
reduction property. A receiver-transmitter metasurface is designed and used as the partially reflective
surface (PRS) of the antenna to realize high gain and wideband RCS reduction. Firstly, the working
principle of the unit cell is similar to the reception and radiation of two patch antennas. The unit cell is
designed to present high reflectivity through tuning the impedance matching between two patches. This
can ensure that the antenna obtains high gain. Then, the ground plane in the middle makes the reflection
phase from different sides of the unit cell be tuned independently. Two unit cells with same reflection
phase from the bottom side and 180◦ reflection phase difference from the top side are obtained through
tuning the size of the transmitter patch. With the improved chessboard arrangement of these two unit
cells, the incident wave can be scattered into many directions. So the metasurface presents a good RCS
reduction property. More importantly, thanks to the high reflectivity of the metasurface, almost all the
electromagnetic waves from the outside are reflected and rarely enter the cavity. Therefore, the antenna
achieves good in band RCS reduction. The measured results of the fabricated antenna agree well with
the simulated ones, which verify the correctness of the design. The antennas reaches the maximum gain
of 18.2 dBi at 10 GHz. Wideband RCS reduction and good in band RCS reduction are also obtained by
the antenna.

1. INTRODUCTION

With the development of modern wireless communication technology, the scattering characteristic
of the communication equipment becomes more and more important. So, the radar cross section
(RCS) reduction technology has become very important in both civil and military applications. As
an important part in the communication system, the antenna is a main scattering source, due to the
metal structure on its radiation aperture. So the RCS reduction of the antennas is a key technology
for stealth platforms. Many researches have been carried out in low RCS antennas [1–8]. A method to
reduce the RCS of a slot array antenna is proposed in [1]. A fishbone-shaped array is designed to make
the antenna present the same amplitude and 180◦ phase difference for two cross-polarized reflected
waves. So the RCS of the antenna is reduced. A low RCS stacked patch antenna using two-layer
metasurface (MS) is presented in [2]. The upper layer metallic pattern is used to absorb incoming wave
out of band, while the lower layer achieves in-band RCS reduction. In recent years, using metasurfaces
to realize RCS reduction is an important research direction. Many methods have been investigated to
reduce the RCS of MS [9–16]. Random combinatorial phase gradient metasurfaces is a common way
to realize RCS reduction. An efficient method for designing broadband, wide-angle, and polarization
independent diffusion MS for RCS reduction is proposed in [9]. The diffusion MS is constructed by
collecting eight supercells with randomly distributed gradient directions. Then, the MS obtains a good
RCS reduction performance. Besides, the chessboard arrangement is also an effective approach to realize
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RCS reduction. The chessboard MS with surface wave suppression is designed to obtain wideband RCS
reduction in [10]. The −10 dB RCS reduction bandwidth of the upper frequency band is extended by
the surface wave suppression of the unit cells.

Fabry-Perot cavity (FPC) antenna has attracted much attention due to its high gain and simple
structure characteristics. With the metal structure on the antenna aperture, the FPC antenna presents
large RCS. So the RCS reduction design of the FPC antenna is very necessary to promote the application
of FPC antenna in stealth platforms. There are some researches on the low RCS FPC antenna [17–25].
A high gain and low-RCS FPC antenna is designed by employing a coding MS in [17]. The 2-bit coding
MS with a random coding sequence can reduce the RCS of the antenna in a broadband. The proposed
antenna realizes RCS reduction and keeps high gain simultaneously. In [18], two different frequency
selection surface (FSS) units are used to form an MS for designing a low RCS FPC antenna. The RCS
reduction is obtained due to the phase cancelation of the designed MS. A circularly polarized FPC
antenna is designed in [19]. With the chessboard arranged polarization conversion MS, the antenna can
also achieve RCS reduction property. In [20], a linear-to-circular polarization converter is designed to
form a circularly polarized FPC antenna with low RCS. The bottom side of the converter is a partially
reflective surface (PRS), and the top side is an absorbing surface (AS). The proposed antenna exhibits
good circular polarization performance with RCS reduction property over a wide band.

For the purpose of obtaining high gain and low RCS simultaneously, a good idea is to design
a metasurface with the property that the reflection phase from different sides can be controlled
independently. So the receiver-transmitter metasurface is a good candidate [26]. A circularly polarized
FPC antenna is designed in [26] employing a receiver-transmitter unit cell. However, in this work, the
receiver-transmitter unit cell is used to realize RCS reduction of the FPC antenna.

In this paper, we design a low RCS MS based on a receiver-transmitter unit cell. Then, MS is
used as the PRS of an FPC antenna to realize RCS reduction of the antenna. The unit cell adopts the
conventional receiver-transmitter unit cell in our previous work [26]. This unit cell has the advantage
of independently controlling the reflection phase from different sides. For the purpose of high gain and
good radiation performance of the FPC antenna, the unit cell is designed to present high reflectivity
firstly. Then, two unit cells with the same reflection phase from bottom side and 180◦ reflection phase
difference from top side are designed by changing the size of the transmitter patches. Through arranging
the two unit cells in an improvement chessboard pattern, make the MS realize wideband RCS reduction.
A low RCS FPC antenna is formed by the proposed MS and a feeder antenna. The Fabry-Perot antenna
obtains broadband RCS reduction while maintaining good radiation characteristics. Especially, good
in-band RCS reduction is also obtained by the antenna due to the high reflectivity of the metasurface,
because the electromagnetic waves from the outside are almost reflected and rarely enter the cavity.

The rest of the paper is organized as follows. In Section 2, a detail analysis of the FPC antenna
is presented, including the resonance condition and estimation of the gain. The design procedure of
the MS and FPC antenna is described in Section 3. Section 4 provides the radiation and scattering
performance of the proposed antenna. The simulated and measured results of the fabricated antenna
are also given. Finally, the conclusions are drawn in Section 5.

2. ANALYSIS OF THE ANTENNA

Fabry-Perot cavity antenna is a common kind of leaky wave antenna. It can obtain high gain properties
with the help of the resonance cavity. The cavity is composed by the ground plane and a PRS. A
radiator is set in the cavity to excite the antenna. The electromagnetic wave that resonates in the
cavity will leak out through the PRS. When the wave coming out of the cavity is in phase, the antenna
will realize high gain radiation. So the condition of the antenna resonance can be expressed as [27]:

ϕS + ϕD − 4πh

λ0
= 2Nπ, N = 0, ±1, ±2 . . . (1)

λ0 is the wavelength in free space. ϕS and ϕD represent reflection phase of PRS and ground plane,
respectively. From the theoretical analysis in [27, 28]. The relationship between antenna directivity and
the reflection magnitude of the PRS R can be expressed as:

Dr = 10 log
1 + R

1 − R
(2)
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Figure 1. Sketch of the proposed low RCS FPC antenna.

It can be seen that the directivity of antenna is enhanced with the increase of R. Therefore, high
reflectivity of PRS is necessary for obtaining high gain of the FPC antenna. In this paper, we replace
the PRS with a well-designed MS to make the antenna achieve high gain and low RCS simultaneously.
The sketch of the proposed FPC antenna is shown in Fig. 1.

3. DESIGN PROCESS OF THE ANTENNAS

3.1. Design of the Reference Antenna

Firstly, we design a reference antenna using a uniform MS. The unit cell of the MS is the conventional
unit cell described in our previous work [26]. The configuration of the unit cell is shown in Figure 2.
The substrate of the unit cell is the same as the unit cell in [26] (SCGA500-GF255, εr,sub = 2.55,
tan δ = 0.0014, h = 1.524 mm). The patch located on the bottom side of the lower substrate acts as the

(b)

(a)

(d)(c) (e)

Figure 2. Structure of the unit cell. (a) Free view of the unit cell. Views of the (b) transmitter
patch, (c) conducting ground, and (d) receiver patch. (e) Simulation model in the CST. (p = 8 mm,
t = 1.524 mm, r1 = 0.6 mm, r2 = 1.6 mm, w2 = 6.46 mm).



106 Xie et al.

receiver, and the patch located on the top side of the upper substrate acts as the transmitter. The two
patches are connected by a metalized via-hole (r1 = 0.6 mm), which offsets the center with a distance
of d in y-direction. The purpose of offsetting the metalized via-hole is to realize impedance matching
between the receiver and transmitter patches. The views of the receiver and transmitter patches are
shown in Figures 2(b) and (d), and Figure 2(c) is the view of the ground plane with a circular gap
(r2 = 1.6 mm). In the simulation, unit cell boundary is set along x and y directions of the unit cell,
while Floquet ports are set along z direction. The incident wave is first received by the receiver patch
and coupled to the transmitter patch through the metalized via-hole. Then, the transmitter patch
radiates circular polarization wave into the free space. In this design, the size of the unit cells is set as
8 × 8 mm2.

We know that the offset distance of the metalized via-hole d influences the impedance matching
between radiator and transmitter patch. Then, the reflection and transmission magnitude of the unit
cell can be tuned through varying d. The simulated reflection magnitude from bottom side of the unit
cell varies with d, shown in Figure 3. The reflection magnitude of the unit cell goes up with the decrease
of d. When d is reduced to 0.7 mm, the reflection magnitude of the unit cell reaches 0.93. The unit
cell with d = 0.7 mm is named unit cell 0. The S parameters of the unit cell 0, including reflection
magnitude, reflection phase, and transmission magnitude, are plotted in Figure 4. Using the unit cell
0, MS0 is formed. The MS0 consists of 16 × 16 unit cells, with a dimension of 128 × 128 mm2. The
reference antenna is composed by the MS0 and a feeder. The view of the MS0 is shown in Figure 5(a).
Unit cells at four corners of the MS are removed and replaced with four holes to facilitate the assembly
of the antenna.

Figure 3. Simulated S11 of the unit cell varies
with d.

Figure 4. The S parameters of the unit cell with
d = 0.7 mm.

A slot coupled patch antenna is chosen as the feeder in our design due to its stable broadside
radiation, as shown in Figure 5(b). The feed antenna consists of two substrates with identical material
(SCGA500-GFF255, εr,sub = 2.55, tan δ = 0.0014) but different thicknesses (hu = 1.524 mm and
hb = 0.762 mm). Between two substrates is a ground plane with a slot under the radiation patch.
The ground plane and MS form the FP resonant cavity. The radiation patch is printed on the top side
of the upper substrate whereas the feeding line is printed on the bottom side of the lower substrate. A
50 Ω SMA connecter is used to feed the antenna from the edge of the substrate. Together with the feed
antenna the reference antenna is formed. The height of the cavity h is obtained according to Eq. (1),
which is set to 6.5 mm after optimization with the CST Microwave Studio. The reference antenna is
named Antenna 0. The values of parameters of the Antenna 0 are displayed in Table 1.

3.2. Design of the Low RCS Antennas

To reduce the RCS of the FPC antenna, the MS used in the antenna should have a nonuniform reflection
phase distribution from the top side (S22). Meanwhile, to keep good resonance characteristics in the
cavity, a uniform reflection phase distribution from the bottom side (S11) of the MS is necessary. So we
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(b)(a)

Figure 5. Configuration of (a) MS0 and (b) feed antenna. (Lp = .6 mm, Ls = 5.5 mm, w0 = 2.1 mm,
L = 128 mm).

Figure 6. Simulated S11 of the unit cell varies with w1.

Table 1. Parameters of the antenna.

Parameter p t h w0 w2 d

Value (mm) 8 1.524 6.5 2.1 6.46 0.7
Parameter r1 r2 L Lp Ls

Value (mm) 0.6 1.6 128 6.6 5.5

improve the unit cell to present different phases of S22 without changing the phase of S11. We find that
changing the value of w1 can only influence the phase of S22 and keep the phase of the S11 constant.
The influence of w1 on S11 is shown in Figure 6, and that on S22 is plotted in Figure 7. When w1

goes up and goes down from 6.46 mm, respectively, the phase difference of S22 increases. When w1

is set to 5.64 mm and 6.96 mm, the two unit cells have equal magnitudes and phases of S11 and 180◦
phase difference of S22 for both polarization waves. The unit cell with w1 = 5.64 mm is named unit
cell 1, and that with w1 = 6.96 mm is named unit cell 2. The same S11 of unit cells can ensure good
radiation characteristic of the antenna, and the 180◦ phase difference of S22 can be used to realize RCS
reduction of the antenna. Figure 6(b) plots the phase of S21 of two unit cells. It can be found that
S21 of two unit cells have 90◦ phase difference. This will influence the radiation performance and gain
of the antenna. In order to overcome this disadvantage, it is preferred to arrange the same unit cells
together on the MS. So the unit cell distribution of the MS is in chessboard arrangement, rather than
random distribution or others. Besides, the reflection magnitudes of two unit cells are both very high.
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(b)(a)

Figure 7. Simulated S22 of the unit cell under (a) y-polarization, and (b) x-polarization.

(b)(a)

Figure 8. Two kinds of chessboard arrangement reflection phase distributions.

These properties can prevent the incident wave from entering the resonant cavity, so that the antenna
can achieve good in-band RCS reduction.

The chessboard arrangement is a common method to realize RCS reduction [7, 8]. The MS adopts
conventional chessboard arranged phase distribution, named MS1, as shown in Figure 8(a). Different
colors represent unit cells with different phases of S22. For the purpose of obtaining better RCS reduction
performance, we propose an improved chessboard arranged method in this paper. The phase distribution
of the new method is shown in Figure 8(b). The following simulation will show that this arrangement
can make the MS have more scatter lobes to obtain better RCS reduction performance. The MS adopts
the improved chessboard arranged phase distribution, named MS2. Figure 9 presents the top views
of MSs. Together with the feed antenna shown in Figure 5(b), two low RCS FPC antennas named
Antennas 1 and 2 are composed. The cavity heights of two antennas are the same as the reference
antenna. Figure 10 shows the simulation model of antenna 2 in CST. The models of antenna 0 and
antenna 1 are similar to antenna 2, so they are not given for simplicity.

The scattering field of the MS can be analyzed by array theory. Assuming that the unit cells on the
MS have the same reflection magnitudes but different reflection phases, and the pattern of the scattering
field is depended on the pattern of the array factor. The array factor of the unit cell (m, n) is expressed
as:

fmn (θ, ϕ) = fxmn (θ, ϕ) fymn (θ, ϕ) ejϕmn = ejmkxejnkyejϕmn (3)

where

x = dx sin θ cos ϕ (4)
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(b)(a)

Figure 9. Configuration of (a) MS1 and (b) MS2.

Figure 10. Structure of the proposed FPC antenna 2.

y = dy sin θ sin ϕ (5)

ϕmn is the reflection phase of the unit cell. So the total array factor of the MS is:

ftotal =
M−1∑
m=0

N−1∑
n=0

fmn (θ, ϕ) =
M−1∑
m=0

N−1∑
n=0

ejmkxejnkyejϕmn (6)

ejϕmn of grids composed by unit cells with reflection phase of 0◦ and 180◦ are equal to 1 and −1,
respectively. For the MS1, ejϕmn can be expressed as:

e
jϕmn

MS1 =

⎡
⎢⎣

1 −1 1 −1
−1 1 −1 1
1 −1 1 −1
−1 1 −1 1

⎤
⎥⎦ (7)

The reflection phase distribution of the MS2 can be equivalent to the figure shown in Figure 6(b).
The grids that contain two kinds of unit cells have no contribution to the scattering field. ejϕmn of these
grids are deemed as 0. So ejϕmn of MS2 can be expressed as:

e
jϕmn

MS2 =

⎡
⎢⎢⎢⎢⎢⎣

0 1 0 0 −1 0
−1 0 −1 1 0 1
0 1 0 0 −1 0
0 −1 0 0 1 0
1 0 1 −1 0 −1
0 −1 0 0 1 0

⎤
⎥⎥⎥⎥⎥⎦

(8)

Then the scattering field of MS1 and MS2 can be obtained according to Equation (6). The calculated
results show that the scattering field of MS1 has four grating lobes, and that of the MS2 has eight
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(b)(a) (c)

Figure 11. 3-D bistatic scattered field at 10 GHz under normal incidence for (a) antenna 0, (b) antenna
1, and (c) antenna 2.

(b)(a)

Figure 12. Monostatic RCS of antennas under (a) x-polarization and (b) y-polarization.

grating lobes. The improved arrangement can make the MS have more grating lobes to obtain better
RCS reduction performance. This will be verified in the following simulation.

The RCS of antennas under normal incidence is simulated by the CST. The bistatic scattered fields
of three antennas at 10 GHz are shown in Figure 11. With MS1, the scattered energy of antenna 1
is redistributed into five directions, and five grating lobes are obtained. However, the lobe in the
normal direction is still large. The scattered energy of antenna 2 is dispersed into many different
directions, forming many energy lobes. Furthermore, the monostatic RCSs of antennas with different
polarization incident waves are shown in Figure 12. Figure 12(a) is the monostatic RCS of antennas
with x-polarization incident wave, and Fig. 12(b) is that with y-polarization incident wave. We can see
that RCS reduction performances are obtained by antennas 1 and 2, while antenna 2 has lower RCS
than antenna 1 in the whole operating band. This shows that the improved chessboard arrangement
has better RCS reduction performance than the traditional chessboard arrangement. So we adopt the
improved chessboard arrangement to form the designed low RCS FPC antenna.

4. ANTENNA PERFORMANCE

4.1. Radiation Characteristics

The proposed FPC antenna 2 and reference antenna 0 are fabricated. The performance of the antennas
is tested in an anechoic chamber. Figure 13 presents the measurement scene. Figure 14(a) plots the
simulated and measured S11 of two antennas. The S11 of antenna 2 is similar to that of antenna 0. It
shows that the two antennas have similar impedance matching conditions. This is because the reflection
coefficients of MS2 are almost the same as that of MS0. The measured S11 of antenna 2 is lower than
−10 dB in the band of 9.8–10.2 GHz. Besides, the application of the MS has little effect on the impedance
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Figure 13. Measurement scene of fabricated antennas.

(b)(a)

Figure 14. Performance of antennas. (a) S11, and (b) gain.

of the feed antenna. So the impedance of the FPC antenna is similar to the feed antenna. The gains
performances of two antennas are shown in Figure 14(b). The measured gains of antennas are all lower
than simulated results. This may be caused by the fabricated errors and the energy loss introduced
by the SMA connector. The maximum measured gain of antenna 2 (18.2 dBi) is lower than antenna 0
(19.1 dBi). This indicates that the chessboard arrangement of two unit cells has some influence on the
gain of the antenna. Anyway, the designed antenna still maintains a high gain property. The aperture
efficiency of the antenna is calculated according to:

η = G
λ2

0

4πA
(9)

The aperture efficiency of the proposed antenna is calculated as 28.9%.
As an important performance of the antenna, the radiation patterns of the antennas are measured

in the anechoic chamber. The simulated and measured radiation patterns of the antenna are shown in
Figure 15. Figures 15(a) and (b) show the patterns of antenna 0, and Figures 15(c) and (d) are the
patterns of antenna 2. The measured results agree well with the simulated ones. The main beam of
antenna 2 is almost unaffected by the chessboard arrangement, but more side lobes are obtained by
antenna 2. This may be caused by the nonuniform sizes of radiator patches. However, the side lobe
levels are all less than −20 dB. The cross-polarization levels of antenna 2 are less than −35 dB. The
measured results show that antenna 2 presents good radiation patterns.

4.2. Scattering Performances

Horn antennas are employed as emitters and receivers to measure the scattering performances of two
fabricated antennas. Matching loads are loaded to the antennas when the RCSs are tested. The
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(b)(a)

(d)(c)

Figure 15. Radiation patterns of: (a) antenna 0 in xoz plane, (b) antenna 0 in yoz plane; (c) antenna
2 in xoz plane, and (d) antenna 2 in yoz plane.

(b)(a)

Figure 16. RCS reduction of antenna 2 under (a) x-polarization and (b) y-polarization.

measured RCS reduction (reference to antenna 0) of antenna 2 is shown in Figure 16. Figures 16(a)
and (b) are the RCS reductions of the antenna 2 under x-polarization and y-polarization, respectively.
Wideband RCS reduction is achieved by antenna 2 from 8 GHz to 14 GHz. The 10 dB RCS reduction
is obtained from 9.5 GHz to 12.3 GHz, and the maximum RCS reduction reaches −18 dB. The RCS
reduction of the antenna in the working band (9.8–10.2 GHz) is larger than 12.3 dB for both polarization
waves, and good in-band RCS reduction is obtained by the proposed antenna 2. This is because the
high reflectivity of the unit cell makes incident wave barely enter the resonant cavity.

To show the performance of the proposed low RCS FPC antenna more clearly, we give a comparison
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Table 2. Comparison of low RCS FPC antennas.

Ref.
Gain
(dBi)

Efficiency
Bandwidth

(GHz)
Average RCS

reduction
In band RCS

reduction

[9] 19.8 55.5% 9.75–10.23
8.76 dB

(8–12 GHz)
16.4 dB (TE)
3.8 dB (TM)

[10] 12 21.6% 9.42–11.35
10 dB

(8–18 GHz)
15 dB (TE)
15 dB (TM)

[11] 11.2 32.4% 8.5–9.5
8 dB

(6–16 GHz)
3 dB (TE)
4 dB (TM)

[12] 10.2 11.7% 10.5–10.75
10 dB

(4–13 GHz)
7 dB (TE)
8 dB (TM)

proposed antenna 18.2 28.9% 9.8–10.2
10 dB

(8–14 GHz)
12.5 dB (TE)
12.3 dB (TM)

between the proposed antenna and former reported antennas in Table 2. The operating band, peak gain,
aperture efficiency, average RCS reduction, and in-band RCS reduction are all listed. From Table 2, we
can observe that the maximum gain of the antenna reaches 18.2 dB at 10 GHz, and an average 10 dB
RCS reduction is obtained by the antenna in the band of 8–14 GHz. Besides, the antenna exhibits good
in-band RCS reduction property. Compared to other former reported antennas, the proposed antenna
realizes high gain and wideband RCS reduction for both polarizations simultaneously, with good in-band
RCS reduction.

5. CONCLUSION

In this paper, a receiver-transmitter MS for RCS reduction of FPC antenna is presented. The working
principle of the unit cell adopted by the metasurface enables it to independently manipulate the reflection
phase from different sides. The unit cell is designed to present high reflectivity first. Then, through
tuning the size of the transmitter patch, two unit cells with same reflection phase from the bottom side
and 180◦ reflection phase difference from the top side are obtained. Two unit cells are arranged in an
improved chessboard pattern on the MS. The low RCS PFC antenna is composed by the proposed MS
and a feed antenna. The performance of the designed antenna is verified by the measured results of
the fabricated antenna. The antenna can realize wideband RCS reduction for both polarizations while
maintain good radiation performance. Besides, the in-band RCS reduction is also very good due to the
high reflectivity of the metasurface. Almost all the electromagnetic waves from the outside are reflected
by the metasurface and rarely enter the cavity. Therefore, the antenna achieves good in band RCS
reduction. The proposed low RCS antenna can be applied to many stealth communication systems.
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