1. Michalski, K. A. and J. R. Mosig, "On the surface fields excited by a hertzian dipole over a layered half-space: From radio to optical wavelengths," IEEE Transactions on Antennas and Propagation, Vol. 63, No. 12, 5741-5752, 2015.
doi:10.1109/TAP.2015.2484422
2. Michalski, K. A. and K. A., "The Sommerfeld halfspace problem redux: Alternative field The Sommerfeld halfspace problem redux: Alternative field," IEEE Transactions on Antennas and Propagation, Vol. 63, No. 12, 5777-5790, 2015.
doi:10.1109/TAP.2015.2489680
3. Michalski, K. A. and D. R. Jackson, "Equivalence of the King and Norton-Bannister Theories of dipole radiation over ground with extensions to plasmonics," IEEE Transactions on Antennas and Propagation, Vol. 64, No. 12, 5251-5261, 2016.
doi:10.1109/TAP.2016.2618542
4. Michalski, K. A. and R. D. Nevels, "On the groundwave excited by a vertical hertzian dipole over planar conductor: Second-order asymptotic expansion with applications to plasmonics," IEEE Transactions on Microwave Theory and Techniques, Vol. 65, No. 4, 1133-1140, 2017.
doi:10.1109/TMTT.2016.2638817
5. Sarkar, T. K. and R. F. Harrington, "Radar cross sections of conducting bodies over a lossy half space," Radio Science, Vol. 15, No. 3, 581-585, 1980.
doi:10.1029/RS015i003p00581
6. Anastassiu, H. T., "A closed form, physical optics expression for the radar cross section of a perfectly conducting flat plate over a dielectric half-space," Radio Science, Vol. 38, No. 2, 10-1, 2003.
doi:10.1029/2002RS002688
7. Bennani, Y., A. Khenchaf, F. Comblet, and A. Ali-Yahia, "Bistatic Radar Cross Section of a complex target on sea surface," 2010 IEEE International Geoscience and Remote Sensing Symposium, 2543-2546, Honolulu, HI, 2010.
8. Peng, P. and L. Guo, "A facet-based simulation of the multipath effect on the EM scattering and doppler spectrum of a low-flying target at maritime scene," IEEE Geoscience and Remote Sensing Letters, Vol. 15, No. 10, 1495-1499, 2018.
doi:10.1109/LGRS.2018.2851756
9. Peng, P., L. X. Guo, Q. Gao, and T. Song, "An hybrid scheme for the composite scattering characteristics of a lossy dielectric target above the composite scale sea surface," 2018 International Conference on Microwave and Millimeter Wave Technology (ICMMT), 1-3, Chengdu, 2018.
10. Feng, T. and T. Guo, "EM scattering of electrically large target above sea surface with SDFSM-SBR method," 2017 Sixth Asia-Pacific Conference on Antennas and Propagation (APCAP), 1-3, 2017.
11. King, R. W. P., M.Owens, and T. T. Wu, Lateral Electromagnetic Waves: Theory and Applications to Communications, Geophysical Exploration, and Remote Sensing, Springer Verlag, New York, 1992.
12. Zor, Ö. and B. Polat, "An implementation of King’s Green functions in thin wire scattering problems," ACES Journal, Vol. 26, No. 12, 1024-1038, 2011.
13. Abramowitz, M. and I. A. Stegun, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, Dover Publications, 1974.
14. Pouliguen, P., R. Heman, C. Bourlier, J. F. Damiens, and J. Sailard, "Analytical formulae for radar cross section of flat plates in near field and normal incidence," Progress In Electromagnetics Research B, Vol. 9, 263-279, 2008.
doi:10.2528/PIERB08081902
15. Norton, K. A., "The physical reality of space and surface waves in the radiation field of radio antenna ," Proceedings of the Institute of Radio Engineers, Vol. 25, No. 9, 1192-1202, 1937.
16. Mclean, Z. S. M. and Z. Wu, Radiowave Propagation over Ground, Chapman & Hall, 1993.
17. Houdzoumis, V., "Part I: Scattering of electromagnetic missiles, Part II: Vertical electric dipole radiation over spherical earth,", Ph.D. Thesis, Harvard University, Cambridge, MA USA, 1994.
18. King, R. W. P. and C. W. Harrison, "Electromagnetic ground wave field of vertical antennas for communication at 1 to 30 MHz," IEEE Transactions on Electromagnetic compatibility, Vol. 40, No. 4, 337-342, 1998.
doi:10.1109/15.736219
19. Emery, D. J., D. G. Money, and H. W. Mainwaring, "Some aspects of design and environmental management in HF surface wave radar," IEE Conference, 51-55, 2002.
20. Abrarov, S. M., B. M. Quine, and R. K. Jagpal, "A sampling-based approximation of the complex error function and its implementation without poles," Applied Numerical Mathematics, Vol. 129, 181-191, 2018.
doi:10.1016/j.apnum.2018.03.009
21. Poppe, G. P. M. and C. M. J. Wijers, "More efficient computation of the complex error function," ACM Transactions on Mathematical Software (TOMS), Vol. 16, 38-46, 1990.
doi:10.1145/77626.77629
22. Butler, C. and D. Wilton, "General analysis of narrow strips and slots," IEEE Transactions on Antennas and Propagation, Vol. 28, No. 1, 42-48, 1980.
doi:10.1109/TAP.1980.1142291
23. Butler, C., "Current induced on a conducting strip which resides on the planar interface between two semi-infinite half-spaces," IEEE Transactions on Antennas and Propagation, Vol. 32, No. 3, 226-231, 1984.
doi:10.1109/TAP.1984.1143308
24. Walker, W. and C. Butler, "A method for computing scattering by large arrays of narrow strips," IEEE Transactions on Antennas and Propagation, Vol. 32, No. 12, 1327-1334, 1984.
doi:10.1109/TAP.1984.1143267
25. Sun, W., K. M. Chen, D. P. Nyquist, and E. J. Rothwell, "Determination of the natural modes for a rectangular plate (transient scattering)," IEEE Transactions on Antennas and Propagation, Vol. 38, No. 5, 643-652, 1990.
doi:10.1109/8.53492
26. Wu, Q. and D. Su, "A broadband model of the characteristic currents for rectangular plates," IEEE Transactions on Electromagnetic Compatibility, Vol. 55, No. 4, 725-732, 2012.
doi:10.1109/TEMC.2012.2221718
27. Coluccini, G. and M. Lucido, "A new high efficient analysis of the scattering by a perfectly conducting rectangular plate," IEEE Transactions on Antennas and Propagation, Vol. 61, No. 5, 2615-2622, 2013.
doi:10.1109/TAP.2012.2237533
28. Lucido, M., "Electromagnetic scattering by a perfectly conducting rectangular plate buried in a lossy half-space," IEEE Transactions on Geoscience and Remote Sensing, Vol. 52, No. 10, 6368-6378, 2014.
doi:10.1109/TGRS.2013.2296353