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Physical Optics Scattering by a PEC Plate Located Vertically
over a Dielectric Half-space

Burak Polat* and Ramazan Daşbaşı

Abstract—Analytical solution and numerical results are provided for the problem of plane wave
scattering by an electrically large Perfect Electric Conductor plate located vertically over a simple
lossy dielectric half-space. The incoming monochromatic homogeneous plane wave is assumed to be
incident from an arbitrary direction and decomposed into TE and TM components. Physical Optics
approximation is used for estimating the currents induced on the plate. The scattered fields are obtained
explicitly by evaluating the Electric Field Integral Equation analytically incorporating the set of Green
functions by R. W. P. King which apply under High Contrast Approximation. Amplitude and phase
variations of the numerical distance and attenuation function are illustrated in HF-MW band ranges.
Azimuth and elevation patterns for scattered electric fields are illustrated with emphasis on the relative
contributions of surface wave fields depending on operating frequency and refractivity. An analytical
procedure to extract free space RCS information from measured/calculated data is introduced based on
the asymptotic behaviors of surface waves and its stability is tested numerically.

1. INTRODUCTION

Electromagnetic waves generated due to Hertzian dipoles radiating in a transmissive medium comprising
two simple half-spaces have complicated behaviors. In literature radiation mechanisms falling into this
category are called Sommerfeld Problems. Interested readers are referred to recent papers by Michalski et
al. (see especially [1–4] and the references therein) for a comprehensive review and recent advances on
the topic. The point source induces surface waves localized in the close neighborhood of the interface
with sophisticated amplitude and phase behaviors described by a special class of complex valued error
functions. Compared to the space waves that decay algebraically in the radial direction with r−1 in
the far field, the surface waves may decay as ρ−1, ρ−2 or e−βρ√ρ along the ground (as illustrated in
Fig. 5), as they additionally display an exponential decay in the perpendicular direction. The surface
waves play the leading role in transportation of energy over the ground to large distances (even over the
horizon) in HF band. On the other hand, in VHF and upper band applications their contribution to
total radiated/scattered far field is generally neglected since the transmitter (Tx) or the receiver (Rx)
is generally air-based (i.e., located at sufficiently high altitude electrically) or quite far to the scatterer
so that the surface wave contribution diminishes (cf. [5–8]). When both Tx and Rx are located close to
the air-ground interface, this argument drops and analytical (parametric) investigation of the relative
contributions of surface waves (as compared to geometrical optics (GO) fields) become determinative.

The motivation of the present canonical problem is to take the first step toward full wave
investigation of scattering by electrically large vehicles and platforms located over a simple lossy
dielectric half space. The features of our investigation are as follows:
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(i) The scatterer is picked as a rectangular Perfect Electric Conductor (PEC) plate positioned vertically
with the bottom rim located on the interface. When the bottom rim of the plate is raised up into
the air, multiple interaction mechanism between the interface and the rims intensifies. At this
point one may mention to a number of GO and Physical Optics (PO) based ray tracing techniques
in literature such as “four path model” or “shooting and bouncing ray” (cf. [6, 9, 10]) which work
(only) with space waves for modeling multiple interaction mechanisms.

(ii) The electrical width and height of the PEC plate are assumed sufficiently large so that PO
approximation in the Far Field Electric Field Integral Equation (FF-EFIE) approximates the
induced currents successfully.

The investigation starts with decomposing the incoming monochromatic homogeneous plane wave
into TE and TM components. Next, the PO currents induced on the plate and the necessary
Cartesian Green dyadics that constitute the FF-EFIE are provided. This is followed with introduction
of an analytical approach to extract free space Radar Cross Section (RCS) information from
measured/calculated data over both planar and spherical grounds and its stability is tested numerically
through HF-MW bands. Time dependence exp(−iωt) is assumed and suppressed.

2. FORMULATION

We consider the scenario in Fig. 1. The constitutive parameters of upper (air) and lower (simple
lossy dielectric) half-spaces are denoted by (ε0, μ0) and (ε, μ0, σ) with wave numbers k = ω

√
μ0 ε0

and k1 = Nk. The refractivity is given by N =
√

εc
r, where εc

r = εr(1 + iτ) is the complex relative
permittivity; εr = ε/ε0 is the relative permittivity; and τ = σ

ωε = 18σS/m

εrfGHz
is called tangent loss. The real

and imaginary parts of refractivity can be expressed explicitly by

�{N} =
√

εr

2

[
1 +

√
1 + τ2

]
> 0, �{N} =

√
εr

2

[
−1 +

√
1 + τ2

]
≥ 0.

Figure 1. The geometry of the problem.

The plate is located on S = {(x1, x2, x3)|x1 = 0, x2 ∈ [−w/2, w/2], x3 ∈ [0, h]} in the reference
frame Ox1x2x3. A uniform monochromatic plane wave propagating in the direction n̂i = −r̂(θi, φi) =
−ρ̂(φi) sin θi− x̂3 cos θi with ρ̂(φi) = x̂1 cos φi + x̂2 sin φi, φi ∈ (−π, π] is incident on the plate. The fields
of the incoming wave are related by


H i =
1
Z

n̂i × 
Ei or 
Ei = Z 
H i × n̂i

with

Ei =

[
θ̂(θi, φi)Eθ0 + φ̂(φi)Eφ0

]
ei	ki·	r, 
H i =

[
θ̂(θi, φi)Hθ0 + φ̂(φi)Hφ0

]
ei	ki·	r
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where

ki = k n̂i, θ̂(θi, φi) = ρ̂(φi) cos θi − x̂3 sin θi, φ̂(φi) = −x̂1 sin φi + x̂2 cos φi

and Z =
√

μ0/ε0
∼= 120π [Ω] is the characteristic impedance of free space (see Fig 2). These 4 scalar

field quantities are related by Hθ0 = Eφ0/Z, Eθ0 = −Z Hφ0. When one inserts Eφ0 = Eθ0e
iδ, the

polarization of the incoming wave is also included in the formulation via an arbitrary phase delay δ.

Figure 2. Plane wave incidence in an arbitrary direction.

2.1. The Physical Optics Currents on the Plate

In order to calculate the field reflected from the interface, we decompose the incident field into TE and
TM components as in Fig. 3 in the semi-plane of incidence Oρ(θi)x3 as


Ei
TE = φ̂(φi)Eφ0 ei	ki·	r, 
H i

TE =
1
Z

Eφ0θ̂(θi, φi) ei	ki·	r


H i
TM = φ̂(φi)Hφ0 ei	ki·	r, 
Ei

TM = −Z Hφ0 θ̂(θi, φi) ei	ki·	r

The boundary relations on the dielectric interface dictate that the reflected wave propagates in the
direction n̂r = r̂(θi, π + φi) = ρ̂(π + φi) sin θi + x̂3 cos θi. Then, the reflected fields can be written as⎧⎨
⎩


Er
TE = φ̂(π + φi)RTEEφ0e

i	kr ·	r


Hr
TE = 1

Z n̂r × 
Er
TE =

1
Z

r̂(θi, π + φi) × φ̂(π + φi)ei	kr ·	r = − 1
Z

RTEEφ0θ̂(θi, π + φi) ei	kr ·	r{

Hr

TM = φ̂(π + φi)RTMHφ0e
i	kr ·	r


Er
TM = Z 
Hr

TM × n̂r = Z RTMHφ0 φ̂(π + φi) × r̂(θi, π + φi) ei	kr ·	r = Z RTMHφ0 θ̂(θi, π + φi) ei	kr ·	r

with θ̂(θi, π + φi) = ρ̂(π + φi) cos θi − x̂3 sin θi, 
kr = k n̂r along with the Fresnel reflection coefficients

RTM =
N2 cos θi −

√
N2 − sin2 θi

N2 cos θi +
√

N2 − sin2 θi

, RTE =
cos θi −

√
N2 − sin2 θi

cos θi +
√

N2 − sin2 θi

The PO electric surface current density induced on the PEC plate is defined by


JPO
S = n̂S ×

(

H i + 
Hr

)∣∣∣
x1=0

, x2 ∈ [−w/2, w/2], x3 ∈ [0, h].

The unit normal of the plate n̂S is equal to +x̂1 or −x̂1 depending on the azimuthal angle of incidence
being in the range φi ∈ [−π/2, π/2] or φi ∈ (π/2, π] ∪ (−π, π/2). For the first choice, the PO currents
read


JPO
S = n̂S ×

(

H i + 
Hr

)∣∣∣
x1=0

= x̂1 ×
(


H i
TE + 
H i

TM + 
Hr
TE + 
Hr

TM

)∣∣∣
x1=0

= x̂2JS2 + x̂3JS3
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(a) (b)

Figure 3. (a) TE and (b) TM decomposition of the incoming wave.

where

JS2(x2, x3; θi, φi) =
1
Z

Eφ0 sin θi

(
ei	ki·	r − RTEei	kr ·	r

)∣∣∣
x1=0

JS3(x2, x3; θi, φi) =
1
Z

Eφ0 cos θi sinφi

(
ei	ki·	r + RTEei	kr ·	r

)∣∣∣
x1=0

+Hφ0 cos φi

(
ei	ki·	r − RTMei	kr ·	r

)∣∣∣
x1=0

with

exp(i
ki · 
r)
∣∣∣
x1=0

= exp [−ik (x2 sin θi sinφi + x3 cos θi)] ,

exp(i
kr · 
r)
∣∣∣
x1=0

= exp [−ik (x2 sin θi sinφi − x3 cos θi)] .

2.2. The Components of the Green Dyadic

The FF-EFIE reveals the expression of the scattered PO electric field in air by the integral


EPO(
r) = iωμ0

∫
S

¯̄G(
r,
r ′) · 
JPO
S (
r ′) dS ′

calculated over the PEC plate. Here, the Green dyadic has the general representation
¯̄G = x̂1x̂1g

1
1 + x̂2x̂1g

1
2 + x̂3x̂1g

1
3 + x̂1x̂2g

2
1 + x̂2x̂2g

2
2 + x̂3x̂2g

2
3 + x̂1x̂3g

3
1 + x̂2x̂3g

3
2 + x̂3x̂3g

3
3

where ga
b stands for the total b-axis electrical field component generated at 
r = (x1, x2, x3) by the

Hertzian dipole (with unit moment) located at 
r ′ = (x′
1, x

′
2, x

′
3) and directed along a-axis. The location

of the plate in our present problem requires incorporating only 6 out of 9 dyads:

¯̄G · 
JPO
S

∣∣∣
x1=0

= x̂1

(
g2
1JS2 + g3

1JS3

)∣∣
x1=0

+ x̂2

(
g2
2JS2 + g3

2JS3

)∣∣
x1=0

+ x̂3

(
g2
3JS2 + g3

3JS3

)∣∣
x1=0

Then, we may define
eikr

kr
Δa(d,i,s)

bN
Δ= iωμ0

∫
S

g
a(d,i,s)
b JSN

∣∣∣
x′
1=0

dS′

and the Cartesian components of the PO electric field can be written as


EPO(
r) = x̂1E1 + x̂2E2 + x̂3E3

with
Ej = E

(d)
j + E

(i)
j + E

(s)
j , j = 1, 2, 3
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where

E
(d,i,s)
1 =

[
Δ2(d,i,s)

12 + Δ3(d,i,s)
13

] eikr

kr
,

E
(d,i,s)
2 =

[
Δ2(d,i,s)

22 + Δ3(d,i,s)
23

] eikr

kr
,

E
(d,i,s)
3 =

[
Δ2(d,i,s)

32 + Δ3(d,i,s)
33

] eikr

kr
.

While the formulation has no restriction so far on the source frequency and the values of the constitutive
parameters of the simple lossy dielectric half-space, we shall continue with the explicit representations of
the Green functions delivered by King under High Contrast Approximation (HCA) |N | ≥ 3 for the planar
interface (cf. [11]). We shape the Green functions available in cylindrical coordinate representation
in literature into Cartesian form. This is the same set of functions employed earlier by one of the
authors [12] to investigate electromagnetic scattering from metallic thin wire structures located over a
planar simple lossy dielectric half-space and are given for x3, x

′
3 ≥ 0 as follows:

g1
1 =

eikR1

4πR1

[
ξ1 − (x1 − x′

1)
2

R2
1

ξ2

]
− eikR2

4πR2

[
η1 − (x1 − x′

1)
2

R2
2

η2

]

+
eikR2

2πR2

1
N

{
(x3 + x′

3)
R2

η3 − η1

N
+

(x2 − x′
2)

2

R2
2

η2

N
− Ξ

N2

R2

P 3

[
ikR2(x1 − x′

1)
2 +

R2
2

P 2
(x2 − x′

2)
2

]}

g1
2 = −(x1 − x′

1)(x2 − x′
2)

R2
1

eikR1

4πR1
ξ2 +

(x1 − x′
1)(x2 − x′

2)
R2

2

eikR2

4πR2
η2

−(x1 − x′
1)(x2 − x′

2)
R2

2

eikR2

2πR2

Ξ
N2

[
η2 +

1
N

R3
2

P 3

(
ikR2 − R2

2

P 2

)]

g1
3 = −(x1−x′

1)(x3−x′
3)

R2
1

eikR1

4πR1
ξ2 +

(x1−x′
1)(x3+x′

3)
R2

2

eikR2

4πR2
η2 − (x1−x′

1)
R2

eikR2

2πR2

1
N

[
η3+

Ξ
N

ikR2
R2

P

]
g2
1 = −g1

2

g2
2 =

eikR1

4πR1

[
ξ1 − (x2 − x′

2)
2

R2
1

ξ2

]
− eikR2

4πR2

[
η1 − (x2 − x′

2)
2

R2
2

η2

]

+
eikR2

2πR2

1
N

{
(x3 + x′

3)
R2

η3 − η1

N
+

(x1 − x′
1)

2

R2
2

η2

N
− Ξ

N2

R2

P 3

[
ikR2(x2 − x′

2)
2 +

R2
2

P 2
(x1 − x′

1)
2

]}

g2
3 = −(x2−x′

2)(x3−x′
3)

R2
1

eikR1

4πR1
ξ2 +

(x2−x′
2)(x3+x′

3)
R2

2

eikR2

4πR2
η2 − (x2−x′

2)
R2

eikR2

2πR2

1
N

[
η3 +

Ξ
N

ikR2
R2

P

]

g3
1 = −(x1−x′

1)(x3−x′
3)

R2
1

eikR1

4πR1
ξ2 − (x1−x′

1)(x3+x′
3)

R2
2

eikR2

4πR2
η2 +

(x1−x′
1)

R2

eikR2

2πR2

1
N

[
η3 +

Ξ
N

ikR2
R2

P

]

g3
2 = −(x2−x′

2)(x3−x′
3)

R2
1

eikR1

4πR1
ξ2 − (x2−x′

2)(x3+x′
3)

R2
2

eikR2

4πR2
η2 +

(x2−x′
2)

R2

eikR2

2πR2

1
N

[
η3 +

Ξ
N

ikR2
R2

P

]

g3
3 =

eikR1

4πR1

[
ξ1 − (x3 − x′

3)
2

R2
1

ξ2

]
+

eikR2

4πR2

[
η1 − (x3 + x′

3)
2

R2
2

η2

]
+

Ξ
N

ikP
eikR2

2πR2

Here,

R1,2 =
∣∣
r ∓ 
r ′∣∣ =

[
(x1 − x′

1)
2 + (x2 − x′

2)
2 + (x3 ∓ x′

3)
2
]1/2

,

P =
[
(x1 − x′

1)
2 + (x2 − x′

2)
2
]1/2

ξ1 = 1 − 1/ikR1 + 1/k2R2
1, ξ2 = 1 − 3/ikR1 − 3/k2R2

1

η1 = 1 − 1/ikR2 + 1/k2R2
2, η2 = 1 − 3/ikR2 − 3/k2R2

2, η3 = 1 − 1/ikR2



156 Polat and Daşbaşı

U = kR2
2N2 [R2+N(x3+x′

3)
P ]2 is called Sommerfeld numerical distance and

Ξ =
√

π

kR2
e−iU

[
1
2
(1 + i) − C2(U) − iS2(U)

]
where

C2(U) + iS2(U) =
∫ ∞

U

exp(it)√
2πt

dt

is the complex Fresnel function. We may use the relation

e−iU

[
1
2
(1 + i) − C2(U) − iS2(U)

]
=

1
2
(1 + i)�

(
eiπ/4

√
U
)

to express Ξ in the compact form

Ξ =
eiπ/4

√
2

�
(
eiπ/4

√
U
)√ π

kR2

in terms of the complex Faddeeva function (cf. [13], Ch. 7)

�(z) = exp
(−z2

)
erfc (−iz) , z ∈ C

The (Cartesian) Green dyadic and its each component constitute direct, perfect image, and surface wave
components, which we shall notate as

¯̄G = ¯̄Gd + ¯̄Gi + ¯̄Gs, ga
b = g

a(d)
b + g

a(i)
b + g

a(s)
b

The perfect image terms correspond to the reflected fields in presence of a PEC surface located on
x3 = 0 plane. The PEC boundary condition requires

Δ2(d)
12 + Δ2(i)

12 + Δ3(d)
13 + Δ3(i)

13

∣∣∣
x3=0

= 0

Δ2(d)
22 + Δ2(i)

22 + Δ3(d)
23 + Δ3(i)

23

∣∣∣
x3=0

= 0

and the surface wave components ¯̄Gs vanish in the limit |N | → ∞. The feature of King’s representation
is the possibility to compare the scattered fields in presence of a simple lossy dielectric half-space with
the results for the special case of a PEC ground by dropping the contributions due to ¯̄Gs.

2.3. Far Field Approximations in the Green Dyadic

As we only require the calculation of the Green dyadic in the far field, the following substitutions in
amplitude and phase terms are adequate before computation:

(x1 − x′
1) → x1 = r sin θ cos φ, (x2 − x′

2) → x2 = r sin θ sin φ, (x3 − x′
3) → x3 = r cos θ

R1,2 → r, P → ρ = r sin θ

ξ1, η1 → 1 − 1/ikr − 1/k2r2, ξ2, η2 → 1 − 3/ikr − 3/k2r2

exp(ikR1) → exp(ikr) exp(−ikr̂ · 
r ′), exp(ikR2) → exp(ikr) exp(+ikr̂ · 
r ′)
exp

(±ikr̂ · 
r ′) = exp
[±ik(x′

2 sin θ sin φ + x′
3 cos θ)

]
U → kr

2N2

[
r + N(x3 + x′

3)
ρ

]2

=
kr

2N2

(
r

ρ

)2 [
1 +

N(x3 + x′
3)

r

]2

=
kr

2N2 sin2 θ

[
1 + N

(
cos θ +

x′
3

r

)]2

Ξ → eiπ/4

√
2

�
(
eiπ/4

√
U
)√ π

kr

x′
3 in U remains as it is (along with cos θ) since cos θ + x′

3/r may take values comparable to 1 when
multiplied by N .
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Explicit expressions of Δa(d,i,s)
bN are provided in Appendix. Right over the interface (as θ → π/2)

one may observe the conditions

Δ2(d+i)
12 = 0, Δ3(d+i)

13 = 0, Δ2(d+i)
22 = 0, Δ3(d+i)

23 = 0, Δ2(d)
32 = Δ2(i)

32 , Δ3(d)
33 = Δ3(i)

33

which read

E
(d+i)
1 = 0, E1 = E

(s)
1 , E

(d+i)
2 = 0, E2 = E

(s)
2 , E

(d+i)
3 = 2

[
Δ2(d)

32 + Δ3(d)
33

] eikr

kr

in accord with the boundary conditions that the tangential electric field components (of the space wave)
vanish while the normal component maximizes on a PEC surface.

3. A PROCEDURE TO CALCULATE FREE SPACE RCS OF TARGETS LOCATED
OVER A TRANSMISSIVE HALF-SPACE

The conventional microwave RCS of a target in free space (RCSfs) is defined by

RCSfs (θR, ϕR; θT , ϕT ; f) = lim
rRS→∞ 4πr2

RS

P̄ fs
RS

P̄ fs
ST

= lim
rRS→∞ 4πr2

RS

∣∣∣ 
Efs
RS

∣∣∣2∣∣∣ 
Efs
ST

∣∣∣2 (1)

with


Hfs
RS =

1
Z

r̂RS × 
Efs
RS , 
Hfs

ST =
1
Z

r̂ST × 
Efs
ST

P̄ fs
RS = r̂RS · �

{
1
2


Efs
RS × 
Hfs∗

RS

}
� 1

2Z

∣∣∣ 
Efs
RS · l̂R

∣∣∣2 ∼= P fs
RS(θR, ϕR; f)

4πr2
RS

P̄ fs
ST = r̂ST · �

{
1
2


Efs
ST × 
Hfs∗

ST

}
=

1
2Z

∣∣∣ 
Efs
ST · l̂S

∣∣∣2
for krRS  1, where (rT , θT , ϕT ) and (rR, θR, ϕR) denote the spherical coordinates of the transmitter
and receiver antennas; rRS = |
rRS | = |
rR − 
rS |; (
Efs

RS , 
Hfs
RS) are the scattered fields at the receiver, and

(
Efs
ST , 
Hfs

ST ) are the fields incident on the target (see Fig. 4).

Figure 4. Bistatic RCS set-up in free space.

In this definition, it is assumed that the transmitter is located at infinity, i.e., a homogeneous
plane wave incidence is considered, and rST = |
rST | = |
rS − 
rT | is not involved. The limiting process
guarantees RCSfs to be range independent. We also assume that the target and the receiver are oriented
along the dummy directions l̂S and l̂R for full reception so that one can easily relate the closed form
RCS pattern to the individual patterns of the field components involved.

RCSfs has 3 essential features:

(i) it has dimension of [m]2,
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(ii) it is range independent,
(iii) it is a measure of the ratio of the scattered power density from the target in the direction of the

receiver to the power density that is intercepted by the target.
In case when the sources are located at a finite distance from the target (cf. [14]), and/or lower
frequency bands are concerned, and/or the medium is non-simple, the scattered fields may have arbitrary
asymptotic behaviors due to the impacts of operating frequency, locations of transmitter/target/receiver
and geometrical and physical properties of the ambient medium. For such scenarios, including our
present problem where certain portion of total power is transmitted by surface waves, we introduce a
unitless correction factor C(rST , rRS) defined by

RCSfs (θR, ϕR; θT , ϕT ; f) Δ= lim
rST ,rRS→∞ 4πr2

RSC(rST , rRS)
P̄RS

P̄ST
(2)

where

P̄RS = r̂RS · �
{

1
2


ERS × 
H∗
RS

}
, P̄ST = r̂ST · �

{
1
2


EST × 
H∗
ST

}
.

We assert that such a calibration shall serve to reach at RCSfs approximately over measured/calculated
values of P̄RS and P̄ST , which are governed by the geometrical and physical properties of the medium
under consideration, as follows:
(i) Measure/Calculate P̄ST and P̄RS in the far field for a specific scenario.
(ii) Calculate 4πr2

RSC(rST , rRS)P̄RS/P̄ST by using the predetermined value of C(rST , rRS) in the given
range.

We are particularly interested in the special case when the target and the receiver are located very
close to the (planar or spherical) ground. In this case the Norton representations of electromagnetic
fields on a dielectric half-space serve better to our purpose (see [15, 16]), where the total scattered fields
(
ERS , 
HRS) over the ground can be related to the free space fields (
Efs

RS , 
Hfs
RS) approximately by

θ̂
(
θ̂ · 
ERS

) ∼= 2
Efs
RSFRS

∣∣∣
x3=0

(3a)


HRS
∼= 2 
Hfs

RSFRS

∣∣∣
x3=0

(3b)


HRS
∼= 1

Z
r̂RS × 
ERS

∣∣∣∣
x3=0

(3c)

with

P̄RS
∼= 1

2Z

∣∣∣ 
ERS

∣∣∣2 ∼= 1
2Z

∣∣∣ 
Efs
RS

∣∣∣2 4 |FRS |2
∣∣∣∣
x3=0

(3d)

with
FRS = 1 + i

√
πURS�(

√
URS) (3e)

representing the Norton attenuation factor.
There are two critical distances that determine the asymptotic behavior of the fields radiated over

ground: ρC = a(ka/2)−1/3 is the critical distance [17] after which the diffraction effects due to earth’s
sphericity cannot be disregarded; and ρi = 8|N |2/k. Here, a = 6378 [km] represents earth’s radius. The
asymptotic behaviors of the scattered fields depending on ρC and ρi are illustrated in Figs. 5 and 6
following [17] and [18].

3.1. The Special Case of Homogeneous Plane Wave Incidence

In this case, the power density directed at the target is calculated by

P̄ST = r̂ST · �
{

1
2


EST × 
H∗
ST

}

=
1
2
r̂ST · �

{(

Ei

TE + 
Er
TE

)
×
(


H i
TE + 
Hr

TE

)∗
+
(


Ei
TM + 
Er

TM

)
×
(


H i
TM + 
Hr

TM

)∗}
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(a)

(b)

Figure 5. Asymptotic behavior of radiated fields over spherical earth for (a) ρC  ρi, (b) ρC � ρi.

(a)

(b)

Figure 6. Asymptotic behavior of radiated fields over spherical earth for (a)ρC ≈ ρi with ρC > ρi (b)
ρC ≈ ρi with ρC < ρi.

When we pick origin as the reference point for calculation of total power density, the individual terms
are calculated as(


Ei
TE + 
Er

TE

)
×
(


H i
TE + 
Hr

TE

)∗
=

1
Z

|Eφ0|2 (RTE − 1) × (r̂(θi, φi) + R∗
TE r̂(θi, π + φi))(


Ei
TM + 
Er

TM

)
×
(


H i
TM + 
Hr

TM

)∗
= Z |Hφ0|2 (R∗

TM − 1) × (r̂(θi, φi) + RTM r̂(θi, π + φi))

This reveals

EST × 
H∗

ST = Dr̂(θi, φi) + Er̂(θi, π + φi) (4a)

D � 1
Z

|Eφ0|2 (RTE − 1) + Z |Hφ0|2 (R∗
TM − 1) (4b)

E � 1
Z

|Eφ0|2 (RTE − 1) R∗
TE + Z |Hφ0|2 (1 − R∗

TM )RTM (4c)

By definition, the target is assumed to be directed in a hypothetical direction that collects the entire
incoming power flux. This requires expressing the incoming power density as

P̄ST =
1
2

∣∣∣ 
EST × 
H∗
ST

∣∣∣ =
1
2

√
sin2 θi |D − E|2 + cos2 θi |D + E|2 (5a)
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This shapes Eq. (2) into

RCSfs(θR, ϕR; θT , ϕT ; f) = lim
rRS→∞ 4πr2

RSC(rRS)
P̄RS

P̄ST

∼= lim
rRS→∞ 4πr2

RSC(rRS)
1

P̄ST

1
2Z

∣∣∣ 
Efs
RS

∣∣∣2 4 |FRS |2
∣∣∣∣
x3=0

= lim
rRS→∞ 4πr2

RSC(rRS)
1

P̄ST

(1/2Z)
∣∣∣ 
Efs

RS

∣∣∣2
(1/2Z)

∣∣∣ 
Efs
ST

∣∣∣2
1

2Z

∣∣∣ 
Efs
ST

∣∣∣2 4
∣∣∣ 
FRS

∣∣∣2
∣∣∣∣∣∣∣
x3=0

= lim
rRS→∞ 4πr2

RSC(rRS)4
∣∣∣ 
FRS

∣∣∣2
∣∣∣∣
x3=0

1
P̄ST

1
2Z

∣∣∣ 
Ei
TE + 
Ei

TM

∣∣∣2 RCSfs

so that C(rRS) is specified by the condition

lim
rRS→∞ 4πr2

RSC(rRS)4 |FRS |2
∣∣∣∣
x3=0

1
P̄ST

1
2Z

∣∣∣ 
Ei
TE + 
Ei

TM

∣∣∣2 = 1,

i.e.,

C(rRS) =
1

P̄ST

∣∣∣ 
Ei
TE + 
Ei

TM

∣∣∣2/2Z

lim
rRS→∞ 4πr2

RS4 |FRS |2
∣∣∣∣
x3=0

=
1

P̄ST

(
|Eφ0|2 + Z2 |Hφ0|2

)/
2Z

lim
rRS→∞ 4πr2

RS4 |FRS |2
∣∣∣∣
x3=0

(5b)

In the planar range we may consider the asymptotic behavior

FRS ∼ − 1
2U

+ O(U−2), U → ∞ with U =
k rRS

2N2

when both the target and the receiver are located on the ground. This reveals

C (θi, N ; θ = π/2) =
1

P̄ST

k2
(
|Eφ0|2 + Z2 |Hφ0|2

)/
2Z

16π|N |4 (6)

3.2. The Special Case of Ground Based Transmitter

In this case, we have the same form of equations as Eq. (3) between the transmitter and the scatterer:

θ̂
(
θ̂ · 
EST

) ∼= 2
Efs
ST FST

∣∣∣
x3=0

, 
HST
∼= 2 
Hfs

ST FST

∣∣∣
x3=0


HST
∼= 1

Z
r̂ST × 
EST

∣∣∣∣
x3=0

, P̄ST
∼= 1

2Z

∣∣∣ 
Efs
ST

∣∣∣2 4 |FST |2
∣∣∣∣
x3=0

and Eq. (4b) is replaced by the condition

lim
rST ,rRS→∞ 4πr2

RSC(rST , rRS)
|FRS |2
|FST |2

= 1,

which reveals
C(rST , rRS) =

1
4π rST rRS

. (7)

As range information is obtained separately in radar systems, the correction factor can be specified and
employed coherently to reveal RCSfs of the target. The computed RCSfs may also be placed into the
ground wave radar equations (cf. [19]) as

PR =
PT · G′

T · G′
R · (λ2/4π) · RCSfs · 4 · |FST |2 4 · |FRS |2

(4πr2
ST ) · (4πr2

RS)
where PT [W] is the transmitter has an output power; GT,R are free space antenna gains; G′

T,R are the
gains when the ground underneath the transmitter is screened by a PEC surface.
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4. EVALUATION OF I(β)

Regarding the contribution of surface wave components in FF-EFIE, we require to compute integrals
in the form

I(β) = I (β; kr, kh, θ,N) Δ=
∫ kh

0
exp

(
iβx̄′

3

)
�
(
eiπ/4

√
U
)

dx̄′
3 (8a)

where
√

U =

√
kr

2
1

sin θ

[
1
N

+ cos θ +
x̄′

3

kr

]
∈ C, (8b)

x̄′
3 = kx′

3, θ ∈ [0, π/2), β ∈ (−2, 2), kr, kh > 0. |√U | is lower bounded by Umin as∣∣∣√U
∣∣∣ ≥

√
kr

2

∣∣∣∣ 1
N

+
x̄′

3

kr

∣∣∣∣ ≥ 1
|N |

√
kr

2
, x̄′

3 ∈ [0, kh].

The integral applies under the approximations kr  1, kh  1 and |N | ≥ 3. Assuming that the
constitutive parameters of the simple lossy half-space remain constant through HF-MW bands, the
refractivity decreases smoothly with frequency.

Table 1. Variation of |N | for different types of ground.

Medium εr σmS/m |N | at fMHz = 3 |N | at fGHz = 30
Sea water 80 4000 154.92 8.95
Wet earth 12 400 48.99 3.46
Dry earth 8 40 15.50 2.83
Lake water 80 4 9.14 8.94

In Table 1, we outline the values of |N | at the two ends of our spectrum under consideration. For
the given parametric range we have

�{N} > �{N} ≥ 0, ∠N ∈ [0, π/4)

�
{√

U
}

=

√
kr

2
1

sin θ

[�{N}
|N |2 + cos θ +

x̄′
3

kr

]
> 0, �

{√
U
}

= −
√

kr

2
1

sin θ

�{N}
|N |2 ≤ 0,

∠
√

U = − tan−1

( �{N}
�{N} + |N |2 (cos θ + x̄′

3/kr)

)
∈ (−π/4, 0] , ∠eiπ/4

√
U ∈ (0, π/4]

and therefore, �{eiπ/4
√

U(x̄′
3)} > 0, �{eiπ/4

√
U(x̄′

3)} > 0.
The smooth decay/variation of the magnitude/phase of the attenuation function �(eiπ/4

√
U) in the

vertical direction in Figs. 7, 8 reveal that the numerical integration of Eq. (8a) converges very rapidly.
This can be managed by either some recursive adaptive quadrature of a popular programming language
(such as “integral” command of MATLABTM ) or as a simple Riemannian integral

I(β) ∼=
h̄·M∑
j=1

Δx · A(xj) exp (iβxj)

where

h̄ = h/λ, Δx = kλ/M = 2π/M, kh = h̄ · M · Δx, xj = Δx(j − 1/2), j = 1, . . . , h̄ · M ; h̄,M ∈ Z
+

A(xj) = �
(
eiπ/4

√
Uj

)
,
√

Uj =

√
kr

2
1

sin θ

[
1
N

+ cos θ +
xj

kr

]
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Figure 7. Variation of |�(eiπ/4
√

U)| with kx′
3 for fMHz = 3, r = 1000λ.
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Figure 8. Variation of ∠�(eiπ/4
√

U) with kx′
3 for fMHz = 3, r = 1000λ.

with min(M) = 30 for sufficient accuracy. In computations we use Faddeeva.m file written by Abrarov
and Quine in [20], which works with accuracy over 1e-13 in entire complex plane. Figs. 7, 8 comply
with the asymptotic behaviors of the Faddeeva function [21]

�(z) ∼ exp(−z2)

(
1 +

2i√
π

∞∑
n=0

z2n+1

n!(2n + 1)

)
, |z| � 1

�(z) ∼ i√
π

exp(−2z2)
z

(
1 −

∞∑
n=1

(2n − 1)!!
(2z2)n

)
, �{z} ≥ 10

5. COMPUTATION OF SCATTERED ELECTRIC FIELDS

The scattered θ- and φ- components of the total electric field can be synthesized in terms of Cartesian
components as

EPO
θ = θ̂ · (x̂1E1 + x̂2E2 + x̂3E3) = cos θ cos φE1 + cos θ sin φE2 − sin θE3

= E
PO(d+i)
θ + E

PO(s)
θ
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E
PO(d+i)
θ =

eikr

kr

⎡
⎢⎢⎢⎢⎣

cos θ cos φ
(
Δ2(d)

12 + Δ3(d)
13 + Δ2(i)

12 + Δ3(i)
13

)
+cos θ sin φ

(
Δ2(d)

22 + Δ3(d)
23 + Δ2(i)

22 + Δ3(i)
23

)
− sin θ

(
Δ2(d)

32 + Δ3(d)
33 + Δ2(i)

32 + Δ3(i)
33

)

⎤
⎥⎥⎥⎥⎦

E
PO(s)
θ =

eikr

kr

[
cos θ cos φ

(
Δ2(s)

12 + Δ3(s)
13

)
+ cos θ sin φ

(
Δ2(s)

22 + Δ3(s)
23

)
− sin θ

(
Δ2(s)

32 + Δ3(s)
33

)]
and

EPO
φ = φ̂ · (x̂1E1 + x̂2E2 + x̂3E3) = − sin φE1 + cos φE2

= E
PO(d+i)
φ + E

PO(s)
φ

with

E
PO(d+i)
φ =

eikr

kr

[
− sin φ

(
Δ2(d)

12 + Δ3(d)
13 + Δ2(i)

12 + Δ3(i)
13

)
+ cos φ

(
Δ2(d)

22 + Δ3(d)
23 + Δ2(i)

22 + Δ3(i)
23

)]
E

PO(s)
φ =

eikr

kr

[
− sin φ

(
Δ2(s)

12 + Δ3(s)
13

)
+ cos φ

(
Δ2(s)

22 + Δ3(s)
23

)]
Decibel values are defined by

EPO
θ,φ [dB] = 20 log10

∣∣∣EPO(d+i+s)
θ,φ

∣∣∣ , E
PO(s)
θ,φ [dB] = 20 log10

∣∣∣EPO(s)
θ,φ

∣∣∣ .
Right over the ground (as θ → π/2) the boundary conditions dictate

Δ2(d+i)
12 ,Δ3(d+i)

13 ,Δ2(d+i)
22 ,Δ3(d+i)

23 ,Δ2(d+i)
32 → 0

while Δ3(d+i)
33 maximizes. This reveals

E
PO(d+i)
θ

∣∣∣
θ= π

2

= −eikr

kr
Δ3(d+i)

33 E
PO(s)
θ = −eikr

kr

(
Δ2(s)

32 + Δ3(s)
33

)
(9a)

EPO
φ

∣∣
θ= π

2

=
eikr

kr

[
− sin φ

(
Δ2(s)

12 + Δ3(s)
13

)
+ cos φ

(
Δ2(s)

22 + Δ3(s)
23

)]
(9b)

We are particularly interested in comparisons of the radiated electric fields over simple lossy dielectric
half-space and PEC ground as θ → π/2. Over PEC ground we set RTE = −1, RTM = 1 in Eq. (9) and
obtain

EPO
PEC

∣∣
θ= π

2
= E

PO(d+i)
θ

∣∣∣
θ=π/2, RTE=−1, RTM =1

(10a)

= −i4π h̄w̄ξ1
eikr

kr
sinc (w̄A) sinc

(
h̄B

)
cos(πh̄B) (Eφ0 cos θi sin φi + ZHφ0 cos φi)

E
PO(d+i)
φ

∣∣∣
θ=π/2, RTE=−1, RTM =1

= 0 (10b)

When the target and Rx are located very close to the ground (as θ → π/2), the scattered magnetic
fields behave like


HPO ∼= 1
Z

r̂ × 
EPO =
1
Z

r̂ ×
(
θ̂EPO

θ + φ̂EPO
φ

)
with complex Poynting vector


PPO
C = �

{
1
2


EPO × 
HPO∗
}

∼= 1
2Z

r̂
∣∣EPO

θ

∣∣2 = r̂P̄RS .

The free-space RCS of the target can be extracted from the equation

RCSfs(θR = π/2, ϕR; θT , ϕT ; f) ∼= 4πr2
RSC(rRS)

1
P̄ST

∣∣EPO
θ

∣∣2
2Z
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by substituting P̄ST in Eq. (5a) and C(rRS) in Eq. (6) to get

RCSfs(θ = π/2, ϕ; θi, ϕi; f) ∼= 1(
sin2 θi |D + E|2 + cos2 θi |−D + E|2

)

×
(
|Eφ0|2 + Z2 |Hφ0|2

)
8Z2 |N |4

∣∣∣Δ3(d+i)
33 + Δ2(s)

32 + Δ3(s)
33

∣∣∣2
θR=π/2

(11)

In numerical illustrations, we set w̄ = w/λ = 20, h̄ = h/λ = 10, θ = π/2, θi = π/4, Eφ0 = 1,
Hφ0 = 1. In Fig. 9, the variation of the amplitude of the surface PO current density induced on the
plate is observed as a standing wave pattern for φi = 0, φ = 0 and at fMHz = 3, where the ground is
lake water. Insufficiency of PO approximation in satisfying the edge conditions constitutes the main
deficiency of the formulation.

Figure 9. Variation of the amplitude of total surface current density | 
JPO
S | over the plate.

In Figs. 10 and 11, the variations of θ- and φ-components of the total electric field are illustrated
for φi = 0, φ = 0 at fMHz = 3. It is observed that the values of |Eθ| on the ground increase gradually
proportional to |N | in Table 1 and maximizes for PEC ground. The case is opposite for |Eφ| with much
less values as dictated by the boundary conditions.
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Figure 10. EPO
θ [dB] for r/λ ∈ (102, 104) and θ = π/2 at fMHz = 3.
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Figure 11. EPO
φ [dB] for r/λ ∈ (102, 104) and θ = π/2 at fMHz = 3.

One may observe from Figs. 10 and 11 that the values of tangential electric fields on a PEC surface
and a simple lossy dielectric half-space are much different at fMHz = 3 for a replacement. As illustrated
in Figs. 12–14, this is actually the case in higher frequencies as well with an expanding gap.
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Figure 12. EPO
θ [dB] for r/λ ∈ (102, 104) and θ = π/2 at fMHz = 30.

The variations of the values of the integrals I(B) and I(C) in Δa(s)
bN outlined in Appendix are crucial

for describing the parametric dependence and the stability of magnitude of surface wave components in
the far field. These are depicted in Figs. 15–18 at fMHz = 3, the lower end of HF band, which may be
considered as the worst scenario.

The scattering patterns are enveloped by the sinc function
f (θ, φ; θi, φi) = |sinc (w̄ (sin θ sin φ + sin θi sin φi))|

θi, θ ∈ (0, π/2), φi, φ ∈ [0, 2π), which is common to all Δa(d,i,s)
bN terms as seen in Appendix A. This

envelope brings about the following distinctive features:
(i) The scattered fields diminish dramatically as w̄| sin θ sin φ + sin θi sinφi| raises to 1 and beyond,

which addresses a pencil-beam main lobe.
(ii) The following symmetries in azimuth and elevation patterns are observed:

f (θ, φ; θi, φi) = f (θ, 2π − φ; θi, φi) = f (θ, φ; θi, 2π − φi) (12a)
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Figure 13. EPO
θ [dB] for r/λ ∈ (102, 104) and θ = π/2 at fMHz = 300.
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Figure 14. EPO
θ [dB] for r/λ ∈ (102, 104) and θ = π/2 at fGHz = 3.
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Figure 15. Variations of amplitude of I(B) for r/λ ∈ (102, 104) and θ = π/2 at fMHz = 3.

f (θ, φ; θi, φi = 0, π) = f (θ, π − φ; θi, φi = 0, π) (12b)

f (θ, φ = 0, π; θi, φi) = f (θ, φ = 0, π; θi, π − φi) (12c)
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Figure 16. Variations of phase of I(B) for r/λ ∈ (102, 104) and θ = π/2 at fMHz = 3.
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Figure 17. Variations of amplitude of I(C) for r/λ ∈ (102, 104) and θ = π/2 at fMHz = 3.
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Figure 18. Variations of phase of I(C) for r/λ ∈ (102, 104) and θ = π/2 at fMHz = 3.

Azimuth patterns for EPO
θ [dB] in Eqs. (9a), (10a) are illustrated in Figs. 19–23 in HF-MW band

range for φ ∈ [−π/2, π/2]. Apart from the aforementioned symmetries in Eq. (12), we observe gradual
increase/decrease of amplitude with refractivity/frequency.
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Figure 19. Azimuth pattern of EPO
θ [dB] for r = 103λ, θ = π/2 at fMHz = 30.
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Figure 20. Azimuth pattern of EPO
θ [dB] for r = 103λ, θ = π/2 at fMHz = 30.
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Figure 21. Azimuth pattern of EPO
θ [dB] for r = 103λ, θ = π/2 at fMHz = 300.

Finally, the stability of the approximation for RCSfs in Eq. (11) is tackled in Figs. 23–25. In virtue
of the wide range of variation of refractivity for the medium parameters (outlined in Table 1) under
test, the failure of an exact match of all curves in the far field can be attributed to two items:



Progress In Electromagnetics Research B, Vol. 88, 2020 169

-90 -75 -60 -45 -30 -15 0 15 30 45 60 75 90
-100

-80

-60

-40

-20

0
Sea water
Wet earth
Dry earth
Lake water

Figure 22. Azimuth pattern of EPO
θ [dB] for r = 103λ, θ = π/2 at fGHz = 3.
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Figure 23. RCSfs(θ = π/2, ϕ = 0; θi = π/4, ϕi = 0; fMHz = 3) in (11).
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Figure 24. RCSfs(θ = π/2, ϕ = 0; θi = π/4, ϕi = 0; fGHz = 3) in (11).

(i) removal of limit operation on rRS ,

(ii) nonlinear variation of Δ2(s)
32 + Δ3(s)

33 with rRS .
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Figure 25. RCSfs(r = 103λ, θ = π/2, ϕ ∈ [0, 2π); θi = π/4, ϕi = 0; fGHz = 3).

The first argument becomes ineffective in the far field. Regarding the second one, the stable (stationary)
behaviors of amplitudes and phases of I(B) and I(C) in the far field with increasing frequency should
be expected to improve the approximation for RCSfs in (11). This is actually observed in Figs. 23–25.
Huge variations in the magnitude of refractivity no more have significant impact on RCSfs information
extracted from calculated data at fGHz = 3 and beyond for observations in neither radial nor angular
directions.

6. CONCLUDING REMARKS

Analytical solution and numerical illustrations for the problem of plane wave scattering by an electrically
large PEC plate located vertically over a simple lossy dielectric half-space are provided. Analytical
procedures to extract free space RCS information from measured/calculated data (over planar and
spherical transmissive grounds) are introduced by the help of the asymptotic behaviors of surface waves.
The success of the numerical tests in Figs. 23–25 is encouraging to continue with actual measurement
in MW bands.

As a future work it is also planned to enhance PO approximation by taking into account the edge
conditions and the integral equations satisfied by the surface current distribution with the hope to
step into complex platforms in advance, based on suitable surface discretization techniques. Relevant
works from literature include introducing products of a series of Chebyshev polynomials with functions
exhibiting the edge conditions as in [22–24], extension of Singularity Expansion Method in [25], extension
of Characteristic Mode Method to PEC plates of arbitrary size in [26], and applications of Galerkin’s
Method in spectral domain in [27] and [28].
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APPENDIX A. CONTRIBUTIONS BY PARTIAL WAVES TO TOTAL SCATTERED
FIELD

In Appendix A, we outline the resultant forms of the direct, perfect image, and surface wave components
of the Green dyadic which are required for calculating the scattered electric field. While ¯̄Gd and ¯̄Gi are
evaluated analytically, the surface wave components ¯̄Gs are expressed in closed form via the integral
I(β) discussed in Section IV with

A = sin θ sin φ + sin θi sinφi, B = cos θ + cos θi, C = cos θ − cos θi.

The Delta values that follow are instrumental not only for the present geometry but also in FF-EFIE
formulation of arbitrary platforms.

Δ2(d+i)
12 = iπh̄w̄ξ2Eφ0 sin2 θ sin φ cos φ sin θisinc(w̄A)

×{sinc
(
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)[
exp

(−iπh̄B
)
+RTE exp

(
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)]−sinc
(
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)[
exp

(
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+RTE exp

(−iπh̄C
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Δ2(s)
12 = iw̄Eφ0 sin2 θ sin φ cos φ sin θisinc(w̄A)
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