1. Manallah, A. and M. Bouafia, "Application of the technique of total integrated scattering of light for micro-roughness evaluation of polished surfaces," Physics Procedia, Vol. 21, 174-179, 2011.
doi:10.1016/j.phpro.2011.10.026
2. Germer, T. A., "Polarized light diffusely scattered under smooth and rough interfaces," Polarization Science and Remote Sensing, Vol. 5158, 193-205, International Society for Optics and Photonics, December 2003.
doi:10.1117/12.505979
3. Pinel, N., C. Bourlier, and J. Saillard, "Degree of roughness of rough layers: Extensions of the Rayleigh roughness criterion and some applications," Progress In Electromagnetics Research, Vol. 19, 41-63, 2010.
doi:10.2528/PIERB09110907
4. Ruiz-Cortés, V. A. and J. C. Dainty, "Experimental light-scattering measurements from large-scale composite randomly rough surfaces," JOSA A, Vol. 19, No. 10, 2043-2052, 2002.
doi:10.1364/JOSAA.19.002043
5. Manallah, A. and M. Bouafia, "Application of the technique of total integrated scattering of light for micro-roughness evaluation of polished surfaces," Physics Procedia, Vol. 21, 174-179, 2011.
doi:10.1016/j.phpro.2011.10.026
6. Spencer, M. F., M. W. Hyde, and IV, "Rough surface scattering for active-illumination systems," SPIE Newsroom, 1-2, 2013.
7. Jafari, G. R., S. M. Mahdavi, A. Iraji Zad, and P. Kaghazchi, "Characterization of etched glass surfaces by wave scattering," Surface and Interface Analysis: An International Journal Devoted to the Development and Application of Techniques for the Analysis of Surfaces, Interfaces and Thin Films, Vol. 37, No. 7, 641-645, 2005.
8. Zamani, M., F. Shafiei, S. M. Fazeli, M. C. Downer, and G. R. Jafari, "Analytic height correlation function of rough surfaces derived from light scattering," Physical Review E, Vol. 94, No. 4, 042809, 2016.
doi:10.1103/PhysRevE.94.042809
9. Sanamzadeh, M., L. Tsang, J. T. Johnson, R. J. Burkholder, and S. Tan, "Scattering of electromagnetic waves from 3D multilayer random rough surfaces based on the second-order small perturbation method: Energy conservation, reflectivity, and emissivity," Journal of the Optical Society of America A, Vol. 34, No. 3, 395-409, 2017.
doi:10.1364/JOSAA.34.000395
10. Wu, Z. S., J. J. Zhang, and L. Zhao, "Composite electromagnetic scattering from the plate target above a one-dimensional sea surface: Taking the diffraction into account," Progress In Electromagnetics Research, Vol. 92, 317-331, 2009.
doi:10.2528/PIER09032902
11. Guo, L. and Z. Wu, "Application of the extended boundary condition method to electromagnetic scattering from rough dielectric fractal sea surface," Journal of Electromagnetic Waves and Applications, Vol. 18, No. 9, 1219-1234, 2004.
doi:10.1163/1569393042955342
12. Qamar, H. H., K. F. A. Hussein, and M. B. El-Mashade, "Assessment of signal strength in indoor optical wireless communications using diffuse infrared radiation," 2019 36th National Radio Science Conference (NRSC), IEEE, 2019.
13. Harvey, J. E., J. J. Goshy, and R. N. Pfisterer, "Modeling stray light from rough surfaces and subsurface scatter," Reflection, Scattering, and Diffraction from Surfaces IV, Vol. 9205, 92050I, International Society for Optics and Photonics, September 2014.
14. Beckmann, P., "Scattering by composite rough surfaces," Proceedings of the IEEE, Vol. 53, No. 8, 1012-1015, 1965.
doi:10.1109/PROC.1965.4081
15. Hyde, M. W., S. Basu, M. F. Spencer, S. J. Cusumano, and S. T. Fiorino, "Physical optics solution for the scattering of a partially-coherent wave from a statistically rough material surface," Optics Express, Vol. 21, No. 6, 6807-6825, 2013.
doi:10.1364/OE.21.006807
16. Elfouhaily, T. M. and C. A. Guérin, "A critical survey of approximate scattering wave theories from random rough surfaces," Waves in Random Media, Vol. 14, No. 4, R1-R40, 2004.
doi:10.1088/0959-7174/14/4/R01
17. Rice, S., "Reflection of electromagnetic waves from slightly rough surfaces," Communications on Pure and Applied Mathematics, Vol. 4, No. 2-3, 351-378, 1951.
doi:10.1002/cpa.3160040206
18. Tian, J., J. Tong, J. Shi, and L. Gui, "A new approximate fast method of computing the scattering from multilayer rough surfaces based on the Kirchhoff approximation," Radio Science, Vol. 52, No. 2, 186-193, 2017.
doi:10.1002/2016RS006151
19. Thorsos, E. I., "The validity of the Kirchhoff approximation for rough surface scattering using a Gaussian roughness spectrum," Journal of the Acoustical Society of America, Vol. 83, No. 1, 78-92, 1988.
doi:10.1121/1.396188
20. Demir, M. A. and J. T. Johnson, "Fourth- and higher-order small-perturbation solution for scattering from dielectric rough surfaces," Journal of the Optical Society of America A, Vol. 20, No. 12, 2330-2337, 2003.
doi:10.1364/JOSAA.20.002330
21. Voti, R., G. Leahu, S. Gaetani, C. Sibilia, V. Violante, E. Castagna, and M. Bertolotti, "Light scattering from a rough metal surface: Theory and experiment," Journal of the Optical Society of America B, Vol. 26, No. 8, 1585-1593, 2009.
doi:10.1364/JOSAB.26.001585
22. Vorburger, T., R. Silver, R. Brodmann, B. Brodmann, and J. Seewig, "Light scattering methods," Optical Measurements of Surface Topography, 287-311, R. Leach (Ed.), Springer, Berlin, 2011.
23. Sanchez-Gil, J. A. and M. Nieto-Vesperinas, "Light scattering from random rough dielectric surfaces," Journal of the Optical Society of America A, Vol. 8, No. 8, 1270-1286, 1991.
doi:10.1364/JOSAA.8.001270
24. Nordam, T., P. Letnes, and I. Simonsen, "Numerical simulations of scattering of light from two-dimensional rough surfaces using the reduced Rayleigh equation," Frontiers in Physics, Vol. 1, 8, 2013.
25. Ishimaru, A. and J. Chen, "Scattering from very rough metallic and dielectric surfaces: A theory based on the modified Kirchhoff approximation," Waves in Random Media, Vol. 1, No. 1, 21-34, 1991.
doi:10.1088/0959-7174/1/1/003
26. Bruce, N. and J. Dainty, "Multiple scattering from rough dielectric and metal surfaces using the Kirchhoff approximation," Journal of Modern Optics, Vol. 38, No. 8, 1471-1481, 1991.
doi:10.1080/09500349114551641
27. Bruce, N., "Multiple scatter of vector electromagnetic waves from rough metal surfaces with infinite slopes using the Kirchhoff approximation," Waves in Random and Complex Media, Vol. 21, No. 2, 362-377, 2011.
doi:10.1080/17455030.2011.563803
28. Tang, K., R. Dimenna, and R. Buckius, "Regions of validity of the geometric optics approximation for angular scattering from very rough surfaces," International Journal of Heat and Mass Transfer, Vol. 40, No. 1, 49-59, 1996.
doi:10.1016/S0017-9310(96)00073-7
29. Tang, K. and R. Buckius, "The geometric optics approximation for reflection from two-dimensional random rough surfaces," International Journal of Heat and Mass Transfer, Vol. 41, No. 13, 2037-2047, 1998.
doi:10.1016/S0017-9310(97)00227-5
30. Ishimaru, A. and J. Chen, "Scattering from very rough surfaces based on the modified second-order Kirchhoff approximation with angular and propagation shadowing," The Journal of the Acoustical Society of America, Vol. 88, No. 4, 1877-1883, 1990.
doi:10.1121/1.400210
31. Holliday, D., "Resolution of a controversy surrounding the Kirchhoff approach and the small perturbation method in rough surface scattering theory," IEEE Transactions on Antennas and Propagation, Vol. 35, No. 1, 120-122, 1987.
doi:10.1109/TAP.1987.1143978
32. Soliman, S. A. M., A. E. Farahat, K. F. A. Hussein, and A. A. Ammar, "Spatial domain generation of random surface using Savitzky-Golay filter for simulation of electromagnetic polarimetric systems," Applied Computational Electromagnetics Society Journal, Vol. 34, No. 1, 2019.
33. Millet, F. and K. Warnick, "Validity of rough surface backscattering models," Waves in Random Media, Vol. 14, No. 3, 327-347, 2004.
doi:10.1088/0959-7174/14/3/008
34. Shi, F., W. Choi, M. J. S. Lowe, E. A. Skelton, and R. V. Craster, "The validity of Kirchhoff theory for scattering of elastic waves from rough surfaces," Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, Vol. 471, No. 2178, 20140977, 2015.
doi:10.1098/rspa.2014.0977
35. Hussein, K. F. A., "Fast computational algorithm for EFIE applied to arbitrarily-shaped conducting surfaces," Progress In Electromagnetics Research, Vol. 68, 339-357, 2007.
doi:10.2528/PIER06122502