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Assessment of Scattering of Plane Waves on Optically Illuminated
Area of Rough Surface
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Abstract—In this paper, a new robust computational method that applies the geometrical theory
of diffraction (GTD) in conjunction with the ray tracing (RT) technique is developed to evaluate the
electromagnetic scattering pattern due to a plane wave incident on a rough surface of quite arbitrary
statistical parameters. The Fresnel reflection model is applied under the assumption of arbitrary
electrical and optical properties of the rough surface material to obtain the scattering patterns for both
the power reflected to the upper half-space and the power transmitted into the medium covered by the
rough surface. Also the polarization of the plane wave primarily incident on the rough surface is taken
into consideration. The algorithm developed in the present work accounts for multiple bounces of an
incident ray and, hence, it can be considered arbitrary higher-order GTD-RT technique. The accuracy
of the obtained results is verified through the comparison with the experimental measurements of the
scattering pattern of a light beam incident on rough sheets with specific statistical properties. Also, some
of the obtained results are compared to other published results using the geometrical optics (GO) and
the second-order Kirchhoff’s approximation. The numerical results of the present work are concerned
with investigating the dependence of the scattering pattern on the surface roughness, refractive index,
angle of incidence, and the resolution of the geometric model of the rough surface. Also, it is shown
that for limited resolution of the rough surface model, the accuracy of the calculated scattered field
depends on the angle of incidence of the primary beam and the surface roughness.

1. INTRODUCTION

Studying electromagnetic (EM) scattering from random rough surfaces, especially in the visible and
infrared spectral range, is of great importance for many applications and scientific research purposes.
The characterization of rough surfaces through the investigation of the EM and light scattering finds wide
fields of scientific research [1–8]. One of the most important applications is the optical tomography, in
which the scattering patterns for a beam incident on an objective material provide extensive information
such as the surface roughness and optical properties. The characterization of the materials and devices
used in VLSI manufacturing is usually accomplished by studying the light scattered from the surfaces of
such constituents. Both theoretical and experimental investigation of EM scattering from rough surfaces
has great importance in many scientific, commercial, and military applications such as the earth remote
sensing for studying the ocean surface and the terrain at long length scales [9–11]. Inner wall coating
inside a building can be considered as random rough surfaces, which have significant effects on the
indoor Optical Wireless Communication (OWC) especially those implementing diffuse topology. The
study of optical scattering from rough surfaces is necessary for the design and performance assessment
of such OWC systems [12]. An ideal “matte” or diffusely reflecting surface has Lambertian reflectance
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property which is greatly recommended for OWC that implement diffuse topology. In other words, the
Lambertian surface’s luminance is isotropic, and the luminous intensity obeys Lambert’s cosine law.

Some analytic and semi-analytic techniques have been proposed for evaluating the EM scattering
from rough surfaces [13–31]. These include (i) the small-amplitude perturbation theory, in which the
scattered field is expanded in powers of the surface profile function through linear terms, (ii) the
Kirchhoff approximation, in which the scattering is treated as reflection from the plane tangent to
the surface at each point, (iii) the extinction theorem in which the scattering equations, based on
this theorem are solved numerically and, finally, (iv) the techniques based on the Rayleigh scattering
equation. In [21], the relationship between the pattern of the scattered light and the statistical
properties of the scattering surface given by Beckmann-Kirchhoff theory is utilized to measure the
surface roughness through an iterative procedure proposed by inverting this relationship, to retrieve the
height autocorrelation function. In [23], the scattering of electromagnetic waves from a rough surface
is treated using the extinction theorem. The angular distribution of the ensemble average of reflected
and transmitted field intensities are calculated. In this method, one-dimensional profiles for the rough
surface are generated through a Monte Carlo method to solve the scattering equations numerically.
In [24], a numerical solution of the reduced Rayleigh equation for the scattering of light from two-
dimensional penetrable rough surfaces is achieved. The pattern of the light scattered from the surface is
calculated by considering a horizontally or vertically polarized light wave incident on two-dimensional
Gaussian or cylindrical rough surfaces of either isotropic or anisotropic statistical properties.

The second-order Kirchhoff approximation [31], also known as the iterated physical optics, consists
of the first two terms of a Neumann expansion of the magnetic field integral equation. The modified
second-order Kirchhoff approximation (KA) proposed in [30] can give the results that agree well with
those obtained by the Monte Carlo numerical simulations and in experiments, using the angular and the
propagation shadowing functions introduced in their solutions for accounting for the effects of the higher
order scattering. The geometrical optics (GO) approximation model for assessment of electromagnetic
scattering on rough surfaces can be obtained as the infinite frequency limit of the physical optics model.
The GO approximation [28, 29] implements ray tracing to follow the electromagnetic energy incident
on the rough surface with the possible subsequent multiple bounces on the points of the rough surface.
This is done for each ray until it leaves the rough surface. It takes into consideration the shadowing
made by the rough surface elements through ray tracing. Each point on which a ray falls is modeled as
a locally optically smooth surface where Fresnel approximation is applicable.

A summary of other techniques used for the assessment of electromagnetic scattering from
rough surfaces is provided in [16]. The methods reviewed in [16] include the Meecham-Lysanov
method, phase-perturbation method, small-slope approximation, operator expansion method, tilt-
invariant approximation, local weight approximation, weighted curvature approximation, Wiener-
Hermite approach, unified perturbation expansion, full-wave approach, improved Green’s function
methods, volumetric method and integral equation method.

The present paper applies the Geometrical Theory of Diffraction (GTD) in conjunction with the
Ray Tracing (RT) to account for scattering of optical waves and other electromagnetic waves from
rough surfaces. Such GTD-RT technique accounts for higher order scattering by considering multiple
bounces of the ray incident on a rough surface. Moreover, the Fresnel reflection and transmission
coefficients are calculated to take into consideration the effect of the material of the rough surface. This
method is applicable for random rough surfaces of both metallic and dielectric materials with quite
arbitrary statistical parameters. The proposed GTD-RT technique is fully numerical and avoids the
approximations encountered in the analytical or semi-analytical techniques that result in significant
inaccuracies (except for the high frequency formulation which is the spirit of the ray theory).

The numerical results for the scattering pattern evaluated using the GTD-RT method is investigated
through experimental verification. The polarization of the plane wave incident on the rough surface is
taken into consideration. The present work investigates the dependence of the accuracy of the resulting
scattering pattern on the resolution of the geometric model of the rough surface. Also, it studies the
dependence of the accuracy of the calculated scattered field on the angle of incidence of the primary
beam and the surface roughness.
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2. GENERATION OF RANDOM ROUGH SURFACE MODEL

Rough surfaces with Gaussian height distribution and Gaussian correlation function are single-scale
surfaces as they have band-limited spectrum. Owing to the well-known statistical characteristics of
Gaussian surfaces, a great deal of research has been conducted to treat such type of rough surfaces.
Gaussian rough surfaces are completely defined statistically by the correlation length, Lc and the root-
mean-squared height, hrms. In the present analysis, it is assumed that, for isotropic rough surface, the
correlation function is power exponential or Gaussian and can be expressed as follows.

C (d) =h2
rmsexp

(
− d2

L2
c

)
, (1)

where d is the horizontal distance between two correlated points on the rough surface.
The slope of the surface can be calculated as the second moment of the power spectrum. A

rough surface with Gaussian correlation function is known to have its surface slope expressed as:
s=

√
2hrms/Lc; the surface roughness in the present study is defined as follows.

RD=
√

2s =
2hrms
Lc

(2)

Let the dimensions of the surface be Lx × Ly which is discretized to Qx × Qy points (vertices)
along x and y directions, respectively. The correlation lengths are Lcx and Lcy along x and y directions,
respectively. The coordinates of each point in surface are (x, y, z), where z is the random height whereas
x and y represent a uniform horizontal grid. The horizontal distances between two adjacent points are
Δx and Δy along x and y directions, respectively. The roughness degree of such a surface depends
on the ratio between hrms and the correlation length. For a square isotropic surface, Lcx = Lcy = Lc,
Lx = Ly = L, Qx = Qy = Q, and Δx = Δy = Δ. For such a surface, let NLc be the number of the
surface points taken along the correlation length, and hence, Lc can be calculated as follows

Lc= (NLc−1)Δ (3)

To generate a rough surface numerically, a two-dimensional array of discrete Gaussian random
numbers with zero-mean, μ = 0, and a standard deviation σ = hrms are generated. These random
numbers represent the heights of the discrete points on the random surface. In this manner the heights
are uncorrelated. To get a rough surface model with a specific correlation length, a Savitzky-Golay
filter (SGF) with a correlation window size of NLc is applied to smooth the rows and then the columns
of the generated array of random numbers [32]. The mean value of the resulting (smoothed) array is
subtracted from the values of the array elements which are then scaled to get their standard deviation
equal to the required root-mean-squared height of the surface. It is shown in [32] using a variogram
measurement of the geometric model of the rough surface generated by the proposed method, that the
required statistical parameters (Lc and hrms) as well as the Gaussian correlation function are accurately
satisfied in the resulting model of the rough surface.

3. EVALUATION OF OPTICAL WAVE SCATTERING ON RANDOM ROUGH
SURFACES

This section is concerned with the evaluation of the optical scattering from random rough surfaces with
arbitrary statistical parameters using the GTD in conjunction with the RT technique. The geometrical
model of the rough surface is created as described in Section 2 such that the plane of incidence is
parallel to xz plane as shown in Figure 1. The plane wave polarization is considered vertically polarized
(V -polarized) if the electric field lies completely in the plane of incidence and is considered horizontally
polarized (H-polarized) if the electric field lies completely in the plane parallel to the xy plane. The
direction of incidence of the plane wave is defined by θi, which is the angle between the propagation
vector ki and the positive z-axis, whereas θ(n)

i is the conventionally known angle of incidence, which is
the supplementary of θi.
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Figure 1. All the vertices on the qth column of the rough surface model are coplanar and lie in the
plane of incidence: y = (q − 1)Δy.

3.1. Applicability of the GTD-RT Technique for Optical Scattering on Rough Surfaces

Logically, for the geometric optics approximation, on which the GTD relies, the wavelength should be
very small relative to the dimensions of the details of the scattering surface such as the nuts, curvatures,
and so on to get accurate assessment of electromagnetic scattering. Consequently, for a rough surface
subjected to an incident electromagnetic wave, it is persuasive that the following conditions should be
satisfied to get accurate results using the GTD-RT.

λ�Lc

√
1+R2

D (4a)

Persuasively, the last condition (4a) may be satisfied for λ∼ 0.1Lc
√

1+R2
D. However, it is shown

by numerical experiments, in Section 4 of the present work, that accurate results can still be obtained

using the GTD-RT for λ∼Lc
√

1+R2
D. It is shown in [28] that the GO approximation still gives accurate

results for the scattering from rough surfaces (under some conditions) even for λ≈ 0.65Lc.
To get accurate numerical assessment of the optical wave scattering on such a surface using the

GTD-RT technique, the following condition should be satisfied

λ� Δ (4b)

If the conditions given by Eq. (4) are satisfied, the GTD-RT technique can be applied to evaluate
the scattering of an optical beam incident on such rough surface model.

3.2. Application of GTD-RT for Assessment of Scattering of Parallel Rays on Rough
Surfaces

This section provides a detailed description of the proposed GTD-RT technique when being applied
to evaluate the optical and EM scattering due to a plane wave illuminating a rough surface as shown
in Figure 1. The incident plane wave is represented by a number of rays; each ray is associated
with an amount of power that is to be calculated so as to satisfy uniform power distribution over the
transverse plane of the incident wave. The phase associated with each of the scattered rays is obtained by
calculating the total distance travelled during ray tracing. The rough surface absorption or reflectance is
evaluated by calculating the Fresnel coefficients at the point of incidence. Finally, a method is proposed
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to calculate the scattering pattern over the upper half space and the the transmission pattern over
the lower half space. Both first order and higher order ray tracing are described through systematic
algorithm facilitated to be applied as a simulation tool for optical and EM scattering on rough surfaces.

The random rough surface is discretized to a grid of vertices arranged uniformly in the x and y
directions and separated by steps Δx and Δy, respectively. The number of vertices along x and y
directions are P and Q, respectively. Each vertex of this uniform grid has a random height zp,q, where
the indices p and q refer to the vertex row and column of the grid in the x and y directions respectively.
Thus, the position vector of a vertex on the rough surface can be expressed as

Vp,q=xp,qâx+yp,qây+zp,qâz (5)

where,
xp,q=pΔx, yp,q = qΔy (6)

Each vertex of the gird representing the rough surface is connected with the adjacent vertices using
triangular meshing. The normal vector at each vertex of the surface is the average of the normal vectors
of the adjacent triangular patches sharing this vertex.

The procedure to apply the proposed GTD-RT method is detailed in the following subsections.

3.2.1. Ray Representation of the Incident Plane Wave

The vector propagation constant of the incident plane wave can be expressed as

ki=koâki
=ko (âxkix+âzkiz) (7)

where ko is the free space wavenumber, âki
the unit vector in the direction of propagation, and

kix= sin θi, kiz= cos θi (8)

The incident plane wave is represented by a number of parallel rays by setting a ray incident on
each vertex Vp,q of the rough surface. Each ray is associated with an amount of power pip,q which is
determined so as to satisfy uniform power density distribution over the transverse plane. Without any
loss in generality, it is assumed that the propagation unit vector of the plane wave âki

is always in the
xz plane (the squint angle is zero). Consider the transverse plane (normal to âki

) that passes through
the point Oq = (0, yp,q, 0). The transverse plane intercepts the plane y = yp,q in the line Liq that passes
through the point Oq.

3.2.2. Calculating the Power Associating Each of the Incident Rays

Starting from the 1st row of vertices of the mesh representing the rough surface and moving sequentially
to the Qth row, the following procedure is applied to scan the vertices on the qth row, Vp,q, sequentially
from p = 1 to p = P :

1- From each vertex Vp,q, draw a line perpendicular to the transverse plane of the incident wave as
shown in Figure 2, and find the intersection point υp whose position vector relative to the point
Oq is υp = (ξp,q, 0, ζp,q). This can be achieved as follows.

υp·âki
= 0 =ξp,qkix+ζp,qkiz (9)

Let Δip,q be the distance from the intersection point υp to the vertex Vp,q; consequently one has

Vp,q = υp + Δip,q âki
(10)

This relation can be split into the following scalar equations

ξp,q = xp,q−kixΔip,q (11a)
ζp,q = zp,q−kizΔip,q (11b)

Equations (9), (11a), and (11b) can be solved together to get Δip,q , ξp,q and ζp,q as follows.
Substitute from Eqs. (11a), (11b) into Eq. (9) and make use of Eq. (8) to get

Δip,q = xp,q sin θi + zp,q cos θi (12)



82 Qamer et al.

Figure 2. The plane of incidence y = (q − 1)Δy. Application of the ray tracing technique to calculate
the scattering of plane waves on rough surfaces.

2- Define ξmax as the maximum value of x-component of υp evaluated during the progress of scanning
the vertices on the qth row sequentially from p = 1 to p = P . Initially set ξmax = 0, and define a
flag variable Υp,q for the incident ray at this vertex.
With scanning the vertices on the qth row moving from left to right, the index p increases by one
for each vertex where the intersection point υp is calculated as described above and the value of
ξmax is updated; that is, if ξp,q > ξmax, then this ray is considered active (Υp,q = 1) and the ξmax

is updated as ξmax = ξp,q. If ξp,q ≤ ξmax, then the ray incident on this vertex is considered inactive
(Υp,q = 0), which means that the vertex (p, q) is shadowed (blocked) from the incident wave by
some part of the surface. Consequently, the ray ip,q does not contribute to the scattered field, which



Progress In Electromagnetics Research B, Vol. 86, 2020 83

implies that the power associating this ray should be set to zero. As shown in Figure 2, the area
illuminated by each incident ray on the transverse plane are not equal and can be expressed as,

Λp,q =
1
2

(LR + LL)Δy (13)

where LR is the distance between the point υp and the nearest right-hand point, υpR
, on the line

Liq corresponding to an active ray, and LL is the distance between the point υp and the nearest
left-hand point, υpL

, corresponding to an active ray. Thus, one has

LR = |υpR
−υp| (14a)

LL = |υpL
−υp| (14b)

Consequently, to get uniform power density on the transverse plane, the power associating each
ray pip,q should be proportional to Λp,q and, hence, can be expressed as,

pip,q=Λp,qPd (15)

where Pd is the power density of the incident plane wave.

3.2.3. Calculating the Directions of the Reflected Rays

In the microscopic study of the scattering from a rough surface it is assumed that the surface of the
region around the point (vertex) of incidence is locally smooth; thus, the Snell’s law can be applied to
get the unit vector in the direction of the reflected ray. The ray ip,q incident on the rough surface at
the vertex Vp,q, makes an angle ϑi with ânp,q which is the unit vector normal to surface at this vertex.
The reflected ray at the same vertex is rp,q; it lies in the same plane of âki

and ânp,q and makes an angle
ϑr = ϑi with ânp,q as shown in Figure 2. Hence, the unit vector âkrp,q

in the direction of the reflected
ray rp,q can be determined as follows

âkrp,q
=âki

+ 2cos ϑiânp,q (16)

The unit vector âkrp,q
can be written in terms of its components as follows

âkrp,q
=krxp,q âx+kryp,q ây+krzp,q âz (17)

3.2.4. Calculating the Phases Associating the Reflected Rays

To calculate the phase associated with each reflected ray rp,q, the path difference travelled by this ray,
Δrp,q shown in Figure 2, should be evaluated. From each vertex, Vp,q, the normal to the wave front of
the reflected ray is drawn as shown in Figure 2. It is required to find the intersection point νp whose
position vector relative to the point Oq is νp,q = (αp,qβp,qγp,q). This can be achieved as follows.

νp,q·âkrp,q
= 0 = αp,qkrxp,q+βp,qkryp,q+γp,qkrzp,q (18)

Let Δrp,q be the distance from the vertex Vp,q to the intersection point νp,q. Thus,

νp,q=Vp,q−Δrp,q âkrp,q
(19)

This can be written in scalar equations as follows,

αp,q = xp,q−krxp,qΔrp,q (20a)
βp,q = yp,q−kryp,qΔrp,q (20b)
γp,q = zp,q−krzp,qΔrp,q (20c)

Equations (18), (20a), (20b), and (20c) can be solved together to get Δrp,q , as follows

Δrp,q=xp,qkrxp,q+xp,qkryp,q+zp,qkrzp,q (21)

Thus, the phase associated with the rp,q can be expressed as,

ΔΦrp,q=
2π
λ

(
Δip,q−Δrp,q

)
(22)
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3.2.5. Calculating the Directions of the Transmitted Rays

The Snell’s law can be applied at the vertex of incidence to get the unit vector in the direction of the
transmitted ray. The transmitted ray at the vertex Vp,q is tp,q; it lies in the same plane of âki

and ânp,q

and makes an angle ϑt with the vector −ânp,q . The relation between ϑi and ϑt is given by,

n1 sinϑi=n2 sinϑt (23)

Hence, the unit vector âktp,q
in the direction of the transmitted ray tp,q can be determined as follows

âktp,q
=
n1

n2
âki

+
(
n1

n2
cosϑi − cos ϑt

)
ânp,q (24)

The unit vector âktp,q
can be written in terms of its components as follows

âktp,q
=ktxp,q âx+ktyp,q ây+ktzp,q âz (25)

3.2.6. Calculating the Phases Associating the Transmitted Rays

To calculate the phase associated with each transmitted ray tp,q, the path difference travelled by this
ray, Δtp,q as shown in Figure 2, should be evaluated. In a way similar to that followed to calculate the
path difference Δrp,q , of the reflected ray, one can arrive at the following expression for Δtp,q .

Δtp,q=xp,qktxp,q+xp,qktyp,q+zp,qktzp,q (26)

Thus, the phase associated with the tp,q can be expressed as,

ΔΦtp,q=
2π
λ

(
Δip,q−Δtp,q

)
(27)

3.2.7. Calculating the Fresnel Coefficients at the Points of Reflection

The ray, ip,q, suffers reflection and transmission at the point of incidence, Vp,q, as shown in Figure 3.
The directions of the reflected and transmitted rays are determined according to the direction of the
normal to the surface at this point and the angles ϑi, ϑr, ϑt shown in Figure 3. The Snell’s law of
optical reflection is applied to determine these angles.

Figure 3. Fresnel reflection at a vertex on the rough surface.

The power prp,q associating the ray rp,q reflected at the vertex Vp,q can be related to the power
associating the ray ip,q incident at the same vertex through the following relation.

prp,q = |Γp,q|2 pip,q , (28)
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where for first-order ray tracing, the factor |Γp,q|2 can be defined as the reflectance, whereas Γp,q is the
Fresnel reflection coefficient of the rough surface at the vertex Vp,q due to the incidence of the ray ip,q.
It should be noted that, later on, the factor Γp,q takes a more general definition for higher order ray
tracing.

The incident electric field can be decomposed into horizontal and vertical components Eih and Eiv,
respectively, with respect to the rough surface at the point of incidence as follows.

Ei = Eihâhip,q + Eivâvip,q (29)

where âhip,q and âvip,q are the local vertical and horizontal polarization unit vectors, respectively, which
can be calculated as follows.

âhip,q=
ânp,q×âki

sinϑi
, âvip,q=âki

× âhip,q (30)

This requires the decomposition of the incident electric field Ei at each vertex of the rough surface
into its components, that is

Eiv = Ei · âvip,q , Eih = Ei · âhip,q (31)

If the incident electric field is confined to the plane of incidence (vertically polarized), which is the
plane formed by ânp,q and âki

, then the Fresnel reflection and transmission coefficients are given by the
following expressions, respectively.

Γ = Γv=
Erv
Eiv

=
n1 cos ϑt−n2 cos ϑi
n1 cos ϑt+n2 cos ϑi

(32a)

T = Tv=
Etv
Eiv

=
2n1 cos ϑi

n1 cos ϑt+n2 cos ϑi
(32b)

where n1 and n2 are the refractive indices of the media above and below the rough surface interface,
respectively. If the incident electric field is normal to the plane of incidence (horizontally polarized), then
the Fresnel reflection and transmission coefficients are given by the following expressions, respectively.

Γ = Γh=
Erh
Eih

=
n1 cos ϑi−n2 cos ϑt
n1 cos ϑi+n2 cos ϑt

(33a)

T = Th=
Eth
Eih

=
2n1 cos ϑi

n1 cosϑi+n2 cos ϑt
(33b)

The local vertical and horizontal polarization unit vectors, respectively, for the reflected and transmitted
rays can be calculated as follows.

âhrp,q = âhip,q , âvrp,q = âkrp,q
× âhrp,q (34a)

âhtp,q = âhip,q , âvtp,q = âktp,q
× âhtp,q (34b)

The reflected and transmitted electric field vectors at the vertex Vp,q can be expressed as,

Er = Erhâhrp,q +Erv âvrp,q (35a)

Et = Ethâhtp,q + Etvâvtp,q (35b)

Usually, the incident electric field is composed of simultaneous vertically and horizontally polarized
components. Substituting from Eqs. (32) and (33) into Eq. (35), one gets the following expressions for
the reflected and transmitted field vectors.

Er = ΓhEihâhrp,q + ΓvEivâvrp,q (36a)

Et = ThE
i
hâhtp,q + TvE

i
vâvtp,q (36b)

In this case, the reflection coefficient at the vertex Vp,q can be calculated as follows.

Er = Erh cosψr + Erv sinψr = ΓhEih cosψr + ΓvEiv sinψr (37)



86 Qamer et al.

where ψr is the angle subtended between the reflected electric field vector and âh and can be expressed
as,

ψrp,q = tan−1

(
|Erv |∣∣Erh∣∣

)
= tan−1

(∣∣ΓvEiv∣∣∣∣ΓhEih∣∣
)

(38a)

Also, let ψip,q be the angle subtended between the incident electric field vector and âhip,q , and thereby,
it can be expressed as,

ψip,q = tan−1

(∣∣Eiv∣∣∣∣Eih∣∣
)

(38b)

Thus, the Fresnel reflection coefficient can be expressed as,

Γ =
Er

Ei
=

ΓhEih cosψrp,q + ΓvEiv sinψrp,q
Eih cosψip,q + Eiv sinψip,q

(39)

3.2.8. Higher Order Scattering

A ray incident on a vertex Vp,q may be subjected to higher order reflection if the reflected ray collides
with the rough surface at another vertex. Figure 4 shows the geometry required to discuss the condition
that such a reflected ray should satisfy to collide with the rough surface. The angle between the ray
reflected at the vertex Vp,q and the horizontal line, τr, can be expressed as

τr=
π

2
− cos−1 krz (40)

Vertex Vp,q

zp ,q

θr  

θr 

τDτr

hrms

1

2
LC

rp,q

ip,q
aki

 

akr

Vertex Vu,v

∧

∧

Figure 4. Condition required to consider higher order reflection of an incident ray.

According to the geometry presented in Figure 4, this ray will escape from other possible collisions
with the rough surface if τr > τD, where τD is defined as,

τD = tan−1

(
RD − 2zp,q

LC

)
(41)

Thus, only the reflected ray that satisfies the following condition can probably collide with another
point on the rough surface before going to the far zone causing second-order scattering.

τr < τD (42)

For optimization of the computational complexity the reflected rays not satisfying the condition (42)
will not be checked for higher order reflections on the rough surface.
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It is clear from Eq. (42) that a higher surface roughness causes larger number of rays to be subjected
to higher order reflections. Only for those reflected rays that satisfy Eq. (42) the following procedure is
applied.

The ray that has the tth bounce at the vertex Vp,q collides with the rough surface at the vertex
Vu,v if the following condition is satisfied

â
(t)
kr
·âu,vp,q = 1, (43)

where â(t)
kr

is the unit vector in the direction of the reflected ray due to the tth bounce, and âu,vp,q is the
unit vector in the direction from Vp,q to Vu,v.

âu,vp,q =
Vu,v − Vp,q

|Vu,v − Vp,q| (44)

If the condition (42) is satisfied, then this ray will have its (t+ 1)th bounce at the vertex Vu,v as
shown in Figure 5. It should be noted that for each bounce of a ray the direction of the reflected ray is
calculated as described in Section 3.2.3. The Fresnel coefficients at the points of reflection on the rough
surface are calculated as described in 3.2.5. The phase associating a ray arriving at the far zone can be
calculated as follows

ΔΦp,q =
2π
λ

(
Δip,q − Δru,v

)
+
NOp,q∑
ν=2

2π
λ
D(ν−1) (45)

where D(ν−1) is the distance travelled by the reflected ray between the (ν − 1)th and the νth bounce
points on the rough surface at the (ν − 1)th bounce point, where ν ≥ 2, NOp,q is the maximum number
of considered bounces, which is equal to the order of GTD-RT technique.
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Figure 5. Double bounce of a ray at the vertices Vp,q and Vu,v on the rough surface.

3.3. Calculation of Scattering Pattern of the Optical Rays Incident on Rough Surfaces

Consider a large hemisphere of radius R → ∞ covering the entire upper half-space (z > 0), as shown
in Figure 6. Let the surface of the hemisphere be uniformly discretized in the θ- and φ-directions as
shown in the figure. This results in M ×N spherical surface segments whose areas can be evaluated as
follows.

amn≈R2sinθmΔθΔφ, m= 1, 2, . . . ,M, n= 1, 2, . . . ,N (46)
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where,

Δθ=
π

2M
, Δφ=

2π
N

(47)

and,

θm=
2m−1

2
Δθ, m= 1, 2, . . . ,M, φn=

2n−1
2

Δφ, n= 1, 2, . . . , N (48)

Substituting from (47) into (46), one gets,

amn≈ π2

MN
R2sinθm, m= 1, 2, . . . ,M, n= 1, 2, . . . ,N (49)

Figure 6. Segmented hemispherical surface above the rough surface with its (zero) mean height lying
in the xy plane.

Consider a number of Qi parallel rays incident in the direction (θi, φi = 0) and uniformly distributed
over the rough surface area under consideration as explained in Section 3. For accurate evaluation of
the scattering pattern over the upper half space, we should have

Qi�MN (50)

Let the vertices, generated as described in Section 2 for the rough surface model, be interconnected
using triangular patches. Each ray ip,q incident on a vertex Vp,q is reflected unless it is blocked from
arriving at this vertex by some part of the rough surface. Hence the number of the reflected rays, Qr is
less than or equal to the number of the incident rays, Qi.

Qr≤Qi (51)

However, the direction of the reflected ray obeys Snell’s law and depends on the local vector
representing the normal of the surface at this vertex (the normal of the rough surface at the point of
incidence).
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Define the two-angular direction, ψp,q of the reflected ray rp,q,

ψp,q ≡ (θp,q, φp,q) (52)

where θp,q and φp,q are the angles between the reflected ray rp,q and the positive directions of the global
z and x axes, respectively.

Define the two-angular zone Ψm,n,

Ψm,n ≡
{

(θ, φ) : θn − 1
2
Δθ ≤ θ < θn +

1
2
Δφ, φn − 1

2
Δφ ≤ φ < φn +

1
2
Δφ
}

(53)

The power density associated with the reflected ray rp,q can be expressed as follows
prp,q

am,n
=

1
2ηo

∣∣Erp,q

∣∣2 (54)

where ηo is the intrinsic wave impedance of free space and |Erp,q | is the magnitude of the electric field
associated with the ray rp,q. Making use of (28), one gets

|Γp,q|2 pip,q

am,n
=

1
2ηo

∣∣Erp,q

∣∣2 (55)

where,

Γp,q=
NOp,q∏
ν=1

Γ(ν) (56)

where Γ(ν) is the Fresnel reflection coefficient of the ray ip,q (primarily incident on the vertex Vp,q) at
the bounce number ν, and NOp,q is the total number of bounces to which the ray ip,q is subjected. It
should be noted that Γ(ν) is calculated using expressions (32), (33) or, generally, (39) by setting u and
v to the values of the indices of the vertex at which the νth bounce occurs. Thus, the scattered electric
field in the far zone can be evaluated as follows,

Emn=E (θm,φn) =e−jkoR
∑

ψp,q∈Ψm,n

Υp,qΓp,q

√
2ηopip,q

am,n
e−j

2π
λ

ΔΦp,q (57)

Making use of (48) and (56), the last expression can be written as,

Emn=
e−jkoR

R

√
MN

π

√
ηo

sinθm

∑
ψp,q∈Ψm,n

Υp,q

NOp,q∏
ν=1

Γ(ν)√pip,q
e−j

2π
λ

ΔΦp,q (58)

4. RESULTS AND DISCUSSIONS

In this section, the accuracy of the results obtained by the GTD-RT method proposed for the assessment
of optical scattering on rough surfaces is examined by comparison with the results obtained by
experimental measurements. The improvement of the accuracy of the results obtained from higher-
order GTD-RT is investigated by comparing the scattering patterns evaluated using a second-order to
those obtained using the first-order GTD-RT. Also, the dependence of the optical scattering on the
surface roughness and its dependence on the refractive index of the medium under the rough surface
are studied. The effect of the resolution of the rough surface model on the accuracy of the evaluated
scattering pattern is investigated. Finally, some of the numerical results obtained in the present work
are compared to those of other published work.
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4.1. Experimental Assessment of the Accuracy of the GTD-RT Method Proposed for
Evaluating Scattering from Rough Surfaces

The GTD-RT method proposed in the present work for the evaluation of the far field pattern due to
plane wave scattering on rough surfaces of arbitrary statistical parameters is assessed by comparison
with some experimental measurements. The source of the incident plane wave is a light source of
λ = 635 nm. The pattern of radiation from this source is presented in Figure 7 as measured by the
optical power meter model Thorlabs R©PM100 with the optical sensor S120B. The experimental setup
for measuring the scattering pattern is presented in Figure 8. The rough sheet subjected to the incident
beam is placed on a vertical wall. The light source is oriented so that the incident beam makes an
angle of 45◦ with the normal to the sheet. The optical sensor connected to the power meter rotates
from −90◦ to 90◦ with the normal to the sheet to read the intensity of the light scattered from the
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Figure 7. Radiation pattern of the light beam used for experimental measurements, λ = 635 nm.

Figure 8. Experimental setup for measuring the scattering pattern due to a light beam incident on a
sheet of rough surface using 635 nm laser source and Thorlabs R©optical power meter model PM100 with
optical detector model S120B.
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flat sheet under test. Two white sheets of different roughness degrees are used for assessment of the
proposed numerical technique: a glossy white sheet of roughness, RD = 0.09, and a matte white sheet
of roughness, RD = 0.225.

A flat sheet of surface roughness RD = 0.09, refractive index n = 1.47, is illuminated using the
light beam shown in Figure 8. The optical scattering pattern is measured using the optical power meter
through the experimental setup as described above. The measured scattering pattern is compared
with that obtained using the second-order GTD-RT method proposed in the present work as shown
in Figure 9(a). Due to the low degree of roughness of the reflecting surface the scattering pattern
shows both specular and diffuse reflection properties. The agreement of the measured pattern with that
numerically assessed shows the accuracy of the proposed GTD-RT method for evaluation of scattering
of plane waves on rough surfaces. The same experiment is repeated for a flat sheet of surface roughness
RD = 0.225, refractive index n = 1.51. The measured scattering pattern is compared with that obtained
using the second-order GTD-RT method proposed in the present work as shown in Figure 9(b). For
the application of the GTD-RT, the correlation length of the rough surface model is assumed to be
LC = 7.16µm. Both the calculated and measured scattering patterns show diffuse reflection property
of the reflecting surface due to the high degree of roughness. The measured scattering pattern agrees
with that numerically assessed showing good accuracy of the proposed GTD-RT method.

0
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3030

(a) (b)
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Figure 9. Comparison between the scattering patterns obtained through experimental measurements
and GTD-RT method for V -polarized optical plane wave of λ = 635 nm incident on flat white sheets
of different values of the roughness LC = 7.16µm, θ(n)

i = 45◦. (a) Glossy white sheet of RD = 0.09,
n = 1.47. (b) Matte white sheet of RD = 0.225, n = 1.51.

It should be noted that the samples of the rough sheets selected for this experimental assessment of
optical scattering have Gaussian height distribution and Gaussian correlation function with the indicated
values of the correlation lengths, root-mean-squared heights, and refractive indices.

4.2. Comparison between the Accuracy of the First- and Second-Order GTD-RT
Methods

The computational cost of applying second-order GTD-RT is considerably large compared to that of
the first-order GTD-RD. The purpose of the present section is to compare the improvement of the
solution obtained using the second-order GTD-RT over that obtained using the first-order method.
For this purpose, three ensembles of rough surface models with different statistical parameters are
generated. The ensemble has 20 different samples of rough surfaces generated with the same statistical
parameters. The rough surface models of the first, second and third ensembles have roughness degrees
RD = 0.06, 0.10, and 0.15, respectively where the correlation length is LC = 7.16µm. For these three
ensembles, Figures 10(a), (b), and (c) show the scattering patterns due to a plane wave incident at angle
45◦ normal to the surface. It is clear that in all the cases, the improvement due to the application of the
2nd order GTD-RT can be negligible even for high degrees of roughness. Considering that the results
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Figure 10. The scattering of V -polarized optical plane wave of λ = 635nm incident on rough surfaces
of LC = 7.16µm, θ(n)

i = 45◦, n = 3.16 resolution 2000 × 2000 vertices, evaluated by the application
of first-order and second-order GTD-RT. (a) Scattering patterns, RD = 0.06. (b) Scattering patterns,
RD = 0.1. (c) Scattering patterns, RD = 0.15. (d) Average error against the degree of roughness.

obtained by the 2nd order method are more accurate than those obtained by the 1st order method,
the average error in the scattering coefficients obtained by the first-order ray tracing can be defined as:
the difference between the average of the scattering coefficients obtained by the first-order ray tracing
over all the directions of the half space and that average obtained by the second-order ray tracing.
The average percent error is defined as the ratio between this difference and the averaged scattering
coefficients obtained by the second-order ray tracing. This error can be calculated as follows.

Average error (%)=
∑
θ,φ

|Er1st (θ, φ) − Er2nd (θ, φ)|∣∣Er2nd (θ, φ)
∣∣ × 100% (59)

where, Er1st(θ, φ) and Er2nd(θ, φ) are the scattered electric fields in the direction (θ, φ) calculated using
the 1st and 2nd order RT, respectively.

Figure 10(d) shows the dependence of such average percent error on the surface roughness. It is
clear that the error due to the application of the 1st order method instead of the 2nd order method
increases with increasing the surface roughness. However, even for highly rough surfaces (RD = 0.3),
the percentage error does not exceed 2.5%. As the application of the 2nd or higher order GTD-RT
is computationally complex, the negligible improvement of the accuracy over the 1st order GTD-RT
makes the latter be more efficient for evaluating optical scattering from rough surfaces.

4.3. Reflection and Transmission through Rough Surfaces

The method developed in the present works accounts for the calculation of the electromagnetic power
reflected to the upper half-space as well as the power transmitted to the lower half-space. Figure 11 shows
the scattering pattern (both reflection and transmission) due to a plane wave incident on horizontal
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rough surfaces of relatively low degree of roughness (RD = 0.08, 0.10). The plane wave is incident at an
angle of 45◦ with the vertical direction as indicated by the arrow labeled i. As determined by Snell’s
law, the direction of specular reflection is indicated in the figure by the arrow labeled r and the direction
of specular refraction (transmission) is indicated by the arrow labeled t. It is shown that, due to the
relatively low roughness of the surface, both the reflection and transmission are mainly specular with a
low level of diffuse scattering. Also, it is shown that as the refractive index increases the reflected power
increases on the account of the transmitted power. For low values of the refractive index n = 1.5, the
transmitted power is considerably larger than the reflected power as shown in Figure 11(a). For high
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Figure 11. The patterns of scattering (reflection and transmission) of a plane wave of λ = 1000 nm
incident on (20µm× 20µm) rough surfaces of LC = 2µm resolution 1000× 1000 vertices, and different
values of the refractive index, θ(n)

i = 45◦. The direction of specular refraction (transmission) according
to Snell’s law is given by the value θt indicated for each case. (a) θt = 28.1◦. (b) θt = 20.7◦. (c)
θt = 13.6◦. (d) θt = 8.1◦.
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values of the refractive index n = 5, the reflected power is considerably larger than the transmitted
power as shown in Figure 11(d).

4.4. Dependence of the Scattering Pattern on the Surface Roughness

As experimentally demonstrated, in Section 4.1 the electromagnetic scattering from a surface of medium
roughness exhibits both specular and diffuse properties whereas a highly rough surface causes only
diffuse scattering. The scattering pattern for a rough surface is strongly dependent on the surface
roughness as shown in Figure 12 for different values of the angle of incidence. It is clear that the beam
width of the scattered optical power increases with increasing the roughness degree. For low roughness
(RD = 0.01), the scattering pattern has a high narrow peak in the specular direction determined
by Snell’s law and insignificant diffuse scattering over the upper space. With increasing the surface
roughness (RD = 0.05, 0.1) the diffuse scattering increases whereas the specular scattering decreases
and, hence, the scattered beam is broadened and the peak in the specular direction is weakened. For
high degrees of roughness, (RD = 0.15), the rough surface produces nearly complete diffuse scattering
where the peak due to specular scattering is almost diminished. Also, it is clear that the angle of
incidence affects the shape and width of the scattering pattern, where the specular component of the
scattered beam seems to be greater with increasing the angle of incidence for a given value of the surface
roughness. In the meantime, the backscatter decreases with increasing the angle of incidence for a given
value of the surface roughness. Generally, with increasing the surface roughness, irrespective of the
angle of incidence θ(n)

i , the backscattered field is clearly increased.
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Figure 12. The scattering patterns due to V -polarized plane wave incident on a rough surface model of
resolution 1000× 1000 vertices, n = 3.16, LC = 7.16µm with different values of the degree of roughness
and the angle of incidence. (a) θ(n)

i = 0◦. (b) θ(n)
i = 30◦. (c) θ(n)

i = 45◦. (d) θ(n)
i = 60◦.
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4.5. Dependence of the Accuracy of the Calculated Scattering Pattern on the Resolution
of the Rough Surface Model

To get accurate results for the scattering coefficients in the far zone due to a plane wave incident on
a rough surface using GTD-RT, the number of the incident rays should be large enough, as given by
Eq. (50), to get accurate ray representation of the scattered power distribution over the half-space. The
larger the number of incident rays the more accurate the obtained scattering coefficients. As the number
of the incident rays is equal to the number of vertices on the rough surface, high resolution of the rough
surface is required to get accurate results for the scattering coefficients in the different directions. The
case of a surface of roughness RD = 0.1 combines the properties of both diffuse and specular reflections.
For this reason, such a roughness is considered to examine the effect of the rough surface resolution on
the accuracy of the results obtained for the scattering pattern.

Figure 13 shows the scattering patterns obtained due to a vertically polarized plane incident on a
rough surface model with different resolutions (number of vertices constructing its geometric model).
For low resolution model (250× 250), the scattering pattern seems to have large errors especially in the
direction normal to the rough surface and in the specular direction. With increasing the resolution, the
accuracy is improved asymptotically (especially in the specular direction) to get accurate results for a
rough surface model of resolution (3000 × 3000).
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Figure 13. The scattering patterns due to V -polarized plane wave incident in the direction θ(n)
i = 45◦

on a 63.5× 63.5µm rough surface model of different resolutions; RD = 0.1; λ = 635 nm, LC = 7.16µm.

Very accurate results for the scattering coefficients over the upper half-space are obtained for a
rough surface model of resolution (3000 × 3000). Increasing the resolution beyond this value does not
have a significant improvement of the obtained accuracy. Thereby, the relative error of the scattering
coefficients due to limited surface resolution can be defined as: the difference between the average of
the scattering coefficients obtained using a specific geometric resolution over all the directions of the
half space and that average obtained using geometric resolution of (3000 × 3000). The relative error
is defined as the ratio between this difference and the averaged scattering coefficients obtained using a
resolution of (3000 × 3000). This error can be calculated as follows.

Relative error =
∑
θ,φ

∣∣∣ErQ (θ, φ) −Er3k (θ, φ)
∣∣∣∣∣Er3k (θ, φ)

∣∣ (60)

where ErQ(θ, φ) and Er3k(θ, φ) are the scattered electric fields in the direction (θ, φ) for rough surface
resolutions Q×Q and 3000 × 3000, respectively, where Q < 3000.

The dependence of this error due to the limited resolution of the rough surface for different values
of the surface roughness and angle of incidence is presented in Figure 14. It is clear that the relative
error, averaged over all the directions in the upper space, is decreased with increasing the resolution of
the rough surface model. Also, for a given resolution, the error increases with decreasing the surface
roughness as shown in Figure 14(a) and, also, increases with increasing the angle of incidence as shown
in Figure 14(b).
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Figure 14. Dependence of the relative error of the calculated scattering pattern due to V -polarized
plane wave incident on a rough surface on the resolution of the geometric model of the rough surface
for different values of the surface roughness and angle of incidence. (a) θ(n)

i = 45◦. (b) RD = 0.05.

4.6. Dependence of the Scattering on the Polarization of Incident Field

The scattering of either H-polarized or V -polarized plane wave incident on a rough surface which is
an interface between the free space and a dielectric medium is investigated for different values of the
surface roughness and refractive indices. As shown in Figure 15(a), for high value of the refractive
index (n = 10), the scattering patterns for the H-polarized and the V -polarized waves are very close to
each other. As shown in Figures 15(b), 16(a), 16(b) for lower values of the refractive index (n = 3.16,
n= 1.5), respectively, the scattering patterns for the two polarizations are different from each other.
It is clear that decreasing the refractive index has the effect of increasing the backscattering of the V -
polarized wave and increasing the scattering of the H-polarized wave in the forward direction parallel
to the surface.On the other side, increasing the roughness of the surface has the effect of decreasing the
specular scattering on behalf of the diffuse scattering for both types of polarization, which is shown by
comparison between the scattering patterns presented in Figures 16(a) and 16(b).
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Figure 15. The scattering patterns due to H-polarized and V -polarized plane waves incident in the
direction θ(n)

i = 45◦ on a 63.5 × 63.5µm rough surface of resolution 1500×1500 vertices and RD = 0.10;
λ = 635nm, LC = 7.16µm. (a) n = 10. (b) n = 3.16.

4.7. Comparison with Other Methods Based on the GO and KA

The scattering coefficients are calculated for a rough surface using the GO approximation and compared
with rigorous electromagnetic solution based on the extinction theorem in [28]. For a perfectly
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Figure 16. The scattering patterns due to H-polarized and V -polarized plane waves incident in the
direction θ

(n)
i = 45◦ on a 63.5 × 63.5µm rough surface of resolution 1500 × 1500 vertices; λ = 635nm,

LC = 7.16µm, n = 1.5. (a) RD = 0.10. (b) RD = 0.15.

conducting rough surface model of RD = 0.2 and Lc = 2λ the optical scattering pattern is obtained
using the GO as described in [28] and compared with the exact solution as shown in Figure 17(a). The
GTD-RT method proposed in the present work is applied to an ensemble of 10 samples of rough surface
models of the same statistical properties where the ensemble average of the obtained scattering patterns
is compared to both the exact solution and that of [28]. It is shown that the scattering pattern obtained
using the GTD-RT algorithm proposed in the present work is closer to the exact solution than that
obtained in [28] using the GO.

For a very rough perfectly conducting surface of roughness RD = 1.1 and correlation length
Lc = 1.8λ, the scattering pattern obtained using the GTD-RT algorithm proposed in the present
work (averaged over an ensemble of size 10) is compared to that obtained in [30] using the modified
second-order Kirchhoff approximation as well as the exact solution obtained by Monte Carlo averaging
of the MoM solution of the integral equation. As shown in Figure 17(b), the solution obtained by the
proposed GTD-RT algorithm of the present work is closer to the exact solution than that obtained using
the Kirchhoff approximation.

For a two-dimensional perfectly conducting surface model of roughness RD = 0.38 and correlation
length Lc = 2.3λ, the scattering pattern obtained using the GTD-RT proposed in the present work
(averaged over an ensemble of size 10) is compared to that obtained in [29] using the GO showing good
agreement as shown in Figure 17(c).

At the end of presenting the numerical results of the present work, it may be useful to highlight the
contributions of the present work in the context of the past methods proposed for the same purpose.
The advantages of the proposed GTD-RT method are briefly discussed versus the most commonly
used methods: Monte Carlo averaging, KA, and GO. Monte Carlo calculations are used for ensemble
averaging the MoM solution of the exact integral equation formulated for the scattered field on a rough
surface. Hence, the Monte Carlo solution is, definitely, more accurate than those obtained by the GO
and the KA. The main computational drawback of the Monte Carlo method is that it leads to a certain
amount of deviation from the correct average that decreases with increasing the number of generated
samples of the rough surface models [33]. Thus, the Monte Carlo method requires a large ensemble of
the surface models to calculate an accurate average value of the scattered field. As the Monte Carlo
method can be considered an exact solution of the integral equation for the scattered field, its solution
is usually taken as the reference to which the results obtained using the GO and KA are compared
for verification of accuracy [28, 30]. The Monte Carlo solution requires a large number of the rough
model samples (ensemble size is usually ranges a few hundreds to one thousand). In the present work,
the ensemble averaging is, also, required for the proposed GTD-RT algorithm for the assessment of
scattering from rough surfaces. However, it is found, by numerical experimentation, that an ensemble
size that ranges from only 5 to 10 can be enough to get more accurate results than those available in
the published work (Section 4.7 show three examples of comparison). Although the GTD-RT algorithm
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Figure 17. The scattering patterns due to a plane wave incident in the direction θ
(n)
i = 45◦ on a

perfectly conducting rough surface of dimensions 100λ×100λ and resolution 1000×1 vertices compared
to other published results. (a) RD = 0.2, Lc = 2λ, θ(n)

i = 45◦. (b) RD = 1.1, Lc = 1.8λ, θ(n)
i = 20◦. (c)

RD = 0.38, Lc = 2.3λ, θ(n)
i = 45◦.

proposed in the present study requires ensemble averaging, the overall computational efficiency of the
proposed method is better than those of the Monte Carlo, KA and GO methods owing to the very
small ensemble size and due to the efficiency of method proposed for the distribution of the points of
the rough surface that are selected to receive the incident rays.

Most of the past published papers implementing Monte Carlo simulation usually use an exact
technique like the method of moments (MoM), finite element (FE), and finite-difference-time-domain
(FDTD) methods or another rigorous numerical technique to get accurate field calculations [34]. The
major achievement of the method proposed in the present paper is the accuracy of the obtained scattered
field together with the computational efficiency of the applied algorithm. As shown from the comparisons
presented in Figure 17, the solution obtained by the proposed GTD-RT algorithm may be closer to the
exact solution than those of the GO and KA methods. This considered as improvement of the accuracy.
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Figure 18. The computational time taken by the GTD-RT method compared to that taken by the
MoM to calculate the scattering patterns (together with corresponding error) due to a plane wave
incident in the direction θ

(n)
i = 45◦ on a perfectly conducting rough surface of dimensions 10λ×10λ

with increasing the resolution; RD = 0.38, Lc = 2.3λ, θ(n)
i = 45◦.

On the other hand, the proposed algorithm is shown to be computationally efficient as it uses a very
small-size ensemble of the rough surface realizations (5–20 may be acceptable) when compared with
the “exact” Monte Carlo method. For assessment of the computational time improvement achieved by
the proposed GTD-RT method, the MoM, as described in [35], is applied to evaluate the pattern of
the scattered field due to a plane wave incident on a given realization of a perfectly conducting rough
surface. As shown in Figure 18, the computational time taken by the proposed GTD-RT method for
calculating the scattered field on the same rough surface realization is considerably lower than that
taken by the MoM.

Considering that the scattered field obtained using the MoM is more accurate than that obtained
by the GTD-RT method, the error in the scattering coefficients obtained by the GTD-RT method can
be defined as the difference between the average of the scattering coefficients obtained by the GTD-RT
over all the directions of the half space and that average obtained by the MoM. The percent error is
defined as the ratio between this difference and the averaged scattering coefficients obtained by the
MoM. This error can be calculated as follows.

Error (%)=
∑
θ,φ

|ErGTD (θ, φ) − ErMoM (θ, φ)|∣∣ErMoM (θ, φ)
∣∣ × 100% (61)

where, ErGTD(θ, φ) and ErMoM (θ, φ) are the scattered electric fields in the direction (θ, φ) calculated
using the GTD-RT and the MoM, respectively. It is shown that, with increasing the resolution (λ/Δ) of
the rough surface model, the resulting error in the scattered field calculated by the GTD-RT is reduced
and almost vanishes for high resolution.

5. CONCLUSION

The GTD-RT technique is proposed to evaluate the electromagnetic scattering from a rough surface of
quite arbitrary statistical parameters. The method of generating the geometrical model of the rough
surface is explained. The Fresnel reflection model is applied for arbitrary electrical and optical properties
of the rough surface material taking into account the polarization of the incident plane wave to obtain
the scattering patterns for both the power reflected to the upper half-space and the power transmitted
into the medium covered by the rough surface. The algorithm developed in the present work can be
considered a higher order GTD-RT that accounts for multiple bounces of an incident ray. The accuracy
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of the obtained results is verified through the comparison with the experimental measurements of the
scattering pattern of a light beam incident on samples of rough sheets with specific statistical properties.
Some of the obtained results are compared to other published results using both the GO approximation
and the second-order Kirchhoff’s approximation showing good agreement. The presented numerical
results are concerned with studying the dependence of the resulting scattering pattern on the surface
roughness, refractive index, angle of incidence, and the resolution of the geometric model of the rough
surface. Also, it is shown that, for limited resolution of the rough surface model, the accuracy of
the calculated scattered field depends on the angle of incidence of the primary beam and the surface
roughness. The proposed GTD-RT method can be considered more accurate than the GO approximation
and KA methods and more computationally efficient than Monte Carlo averaging method.
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