Vol. 85
Latest Volume
All Volumes
PIERB 109 [2024] PIERB 108 [2024] PIERB 107 [2024] PIERB 106 [2024] PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2019-10-05
Optimization and Additive Manufacture of a Miniature 3-d Pixel Antenna for Dual-Band Operation
By
Progress In Electromagnetics Research B, Vol. 85, 163-180, 2019
Abstract
This paper presents the design, manufacture, and experimental validation of a novel 3-D pixel antenna with volume-filling characteristics, and the design is based on our Method of Moments (MoM) solver that is efficiently coupled with a global/local optimizer for tailoring the antenna shape and concurrently selecting the location of the feeding port and shorting straps. The design, aimed at operating in the ISM bands of 2.45 GHz and 5.8 GHz, has dimensions under one-tenth of wavelength at the lowest frequency of operation. The optimization results are cross-validated using a commercial full-wave simulator, with a deviation of the reflection coefficient across the operating bands within 3%, showing also a high antenna efficiency of 99.6% and a gain of 1.06 and 4.53 dBi at the matching frequencies, with radiation patterns predominantly oriented towards the top hemisphere. Tolerance and parameter sensitivity studies were also performed. A scaled-up prototype of the antenna was built at a very low cost using standard additive manufacturing techniques, featuring a very good agreement between simulation and measurements, which proves the feasibility of this new kind of complex shape antennas in further applications where compact internal antennas are required.
Citation
Germán Augusto Ramírez Arroyave, and Javier Leonardo Araque Quijano, "Optimization and Additive Manufacture of a Miniature 3-d Pixel Antenna for Dual-Band Operation," Progress In Electromagnetics Research B, Vol. 85, 163-180, 2019.
doi:10.2528/PIERB19071809
References

1. Gao, W., Y. Zhang, D. Ramanujan, K. Ramani, Y. Chen, C. B. Williams, C. C. Wang, Y. C. Shin, S. Zhang, and P. D. Zavattieri, "The status, challenges, and future of additive manufacturing in engineering," Computer-Aided Design, Vol. 69, 65-89, 2015, [online], available: http://www.sciencedirect.com/science/article/pii/S001044851500.
doi:10.1016/j.cad.2015.04.001

2. Tofail, S. A., E. P. Koumoulos, A. Bandyopadhyay, S. Bose, L. O’Donoghue, and C. Charitidis, "Additive manufacturing: Scientific and technological challenges, market uptake and opportunities," Materials Today, Vol. 21, No. 1, 22-37, 2018, [online], available: http://www.sciencedirect.com/science/article/pii/S13697021173.
doi:10.1016/j.mattod.2017.07.001

3. Ituarte, I. F., E. Coatanea, M. Salmi, J. Tuomi, and J. Partanen, "Additive manufacturing in production: A study case applying technical requirements," Physics Procedia, Vol. 78, 357– 366, 2015, 15th Nordic Laser Materials Processing Conference, Nolamp 15, [online], available: http://www.sciencedirect.com/science/article/pii/S1875389215015400.

4. Gibson, I., B. Stucker, and D. Rosen, Additive Manufacturing Technologies, Springer-Verlag, 2015.
doi:10.1007/978-1-4939-2113-3

5. Attaran, M., "The rise of 3-D printing: The advantages of additive manufacturing over traditional manufacturing," Business Horizons, Vol. 60, No. 5, 677-688, 2017, [online], available: http://www.sciencedirect.com/science/article/pii/S0007681317300897.
doi:10.1016/j.bushor.2017.05.011

6. DebRoy, T., H. Wei, J. Zuback, T. Mukherjee, J. Elmer, J. Milewski, A. Beese, A. Wilson- Heid, A. De, and W. Zhang, "Additive manufacturing of metallic components — Process, structure and properties," Progress in Materials Science, Vol. 92, 112-224, 2018, [online], available: http://www.sciencedirect.com/science/article/pii/S0079642517301172.
doi:10.1016/j.pmatsci.2017.10.001

7. Frazier, W. E., "Metal additive manufacturing: A review," Journal of Materials Engineering and Performance, Vol. 23, No. 6, 1917-1928, Jun. 2014, [online], available: https://doi.org/10.1007/s11665-014-0958-z.
doi:10.1007/s11665-014-0958-z

8. Herzog, D., V. Seyda, E. Wycisk, and C. Emmelmann, "Additive manufacturing of metals," Acta Materialia, Vol. 117, 371-392, 2016, [online], available: http://www.sciencedirect.com/science/article/pii/S1359645416305158.
doi:10.1016/j.actamat.2016.07.019

9. Atzeni, E. and A. Salmi, "Economics of additive manufacturing for end-usable metal parts," The International Journal of Advanced Manufacturing Technology, Vol. 62, No. 9, 1147-1155, Oct. 2012, [online], available: https://doi.org/10.1007/s00170-011-3878-1.

10. Huang, Y., X. Gong, S. Hajela, and W. J. Chappell, "Layer-by-layer stereolithography of three-dimensional antennas," 2005 IEEE Antennas and Propagation Society International Symposium, Vol. 1A, 276-279, Jul. 2005.

11. Maas, J., B. Liu, S. Hajela, Y. Huang, X. Gong, and W. J. Chappell, "Laser-based layer-by-layer polymer stereolithography for high-frequency applications," Proceedings of the IEEE, Vol. 105, No. 4, 645-654, Apr. 2017.
doi:10.1109/JPROC.2016.2629179

12. Adams, J. J., E. B. Duoss, T. F. Malkowski, M. J. Motala, B. Y. Ahn, R. G. Nuzzo, J. T. Bernhard, and J. A. Lewis, "Conformal printing of electrically small antennas on threedimensional surfaces," Advanced Materials, Vol. 23, No. 11, 1335-1340, 2011, [online], available: https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.201003734.
doi:10.1002/adma.201003734

13. Ghazali, M. I. M., E. Gutierrez, J. C. Myers, A. Kaur, B. Wright, and P. Chahal, "Affordable 3D printed microwave antennas," 2015 IEEE 65th Electronic Components and Technology Conference (ECTC), 240-246, May 2015.
doi:10.1109/ECTC.2015.7159599

14. Van der Vorst, M. and J. Gumpinger, "Applicability of 3D printing techniques for compact Ku-band medium/high-gain antennas," 2016 10th European Conference on Antennas and Propagation (EuCAP), 1-4, Apr. 2016.

15. Tech, O., "Metal 3D printed custom antennas,", 2018, [online], available: https://www.optisys.tech/.

16. Foged, L. J., A. Giacomini, R. Morbidini, F. Saccardi, V. Schirosi, M. Boumans, B. Gerg, and D. Melachrinos, "Investigation of additive manufacturing for broadband choked horns at X/Ku band," IEEE Antennas and Wireless Propagation Letters, Vol. 17, No. 11, 2003-2007, Nov. 2018.
doi:10.1109/LAWP.2018.2868611

17. Hansen, R. C. and R. E. Collin, Small Antenna Handbook, Wiley-IEEE Press, 2012.

18. Wheeler, H. A., "Fundamental limitations of small antennas," Proceedings of the IRE, Vol. 35, No. 12, 1479-1484, Dec. 1947.
doi:10.1109/JRPROC.1947.226199

19. Chu, L. J., "Physical limitations of omni-directional antennas," Journal of Applied Physics, Vol. 19, No. 12, 1163-1175, 1948, [online], available: http://dx.doi.org/10.1063/1.1715038.
doi:10.1063/1.1715038

20. McLean, J. S., "A re-examination of the fundamental limits on the radiation Q of electrically small antennas," IEEE Transactions on Antennas and Propagation, Vol. 44, No. 5, 672, May 1996.
doi:10.1109/8.496253

21. Yaghjian, A. D. and H. R. Stuart, "Lower bounds on the Q of electrically small dipole antennas," IEEE Transactions on Antennas and Propagation, Vol. 58, No. 10, 3114-3121, Oct. 2010.
doi:10.1109/TAP.2010.2055790

22. Kim, O. S., "Rapid prototyping of electrically small spherical wire antennas," IEEE Transactions on Antennas and Propagation, Vol. 62, No. 7, 3839-3842, Jul. 2014.
doi:10.1109/TAP.2014.2317489

23. Rowell, C. and E. Y. Lam, "Mobile-phone antenna design," IEEE Antennas and Propagation Magazine, Vol. 54, No. 4, 14-34, Aug. 2012.
doi:10.1109/MAP.2012.6309152

24. Wong, H., K. Luk, C. H. Chan, Q. Xue, K. K. So, and H. W. Lai, "Small antennas in wireless communications," Proceedings of the IEEE, Vol. 100, No. 7, 2109-2121, Jul. 2012.
doi:10.1109/JPROC.2012.2188089

25. Croq, F. and D. M. Pozar, "Millimeter-wave design of wide-band aperture-coupled stacked microstrip antennas," IEEE Transactions on Antennas and Propagation, Vol. 39, No. 12, 1770-1776, Dec. 1991.
doi:10.1109/8.121599

26. Targonski, S. D., R. B. Waterhouse, and D. M. Pozar, "Design of wide-band aperture-stacked patch microstrip antennas," IEEE Transactions on Antennas and Propagation, Vol. 46, No. 9, 1245-1251, Sep. 1998.
doi:10.1109/8.719966

27. Quijano, J. L. A. and G. Vecchi, "Optimization of an innovative type of compact frequency-reconfigurable antenna," IEEE Transactions on Antennas and Propagation, Vol. 57, No. 1, 9-18, Jan. 2009.
doi:10.1109/TAP.2008.2009649

28. Quijano, J. L. A. and G. Vecchi, "Optimization of a compact frequency- and environment-reconfigurable antenna," IEEE Transactions on Antennas and Propagation, Vol. 60, No. 6, 2682-2689, Jun. 2012.
doi:10.1109/TAP.2012.2194634

29. Rodrıguez, D. O., M. A. Saavedra, G. A. Ramırez, and J. L. Araque, "Realization of a compact reconfigurable antenna for mobile communications," 2014 IEEE-APS Topical Conference on Antennas and Propagation in Wireless Communications (APWC), 284-287, Aug. 2014.
doi:10.1109/APWC.2014.6905549

30. Arroyave, G. A. R. and J. L. A. Quijano, "Dual-port reconfigurable planar antennas for diversity and duplexing applications," 2016 IEEE International Symposium on Antennas and Propagation (APSURSI), 1247-1248, Jun. 2016.
doi:10.1109/APS.2016.7696331

31. Byndas, A., R. Hossa, M. E. Bialkowski, and P. Kabacik, "Investigations into operation of single- and multi-layer configurations of planar inverted-F antenna," IEEE Antennas and Propagation Magazine, Vol. 49, No. 4, 22-33, Aug. 2007.
doi:10.1109/MAP.2007.4385593

32. Huynh, M. and W. Stutzman, "Ground plane effects on planar inverted-F antenna (PIFA) performance," IEE Proceedings — Microwaves, Antennas and Propagation, Vol. 150, No. 4, 209-213, Aug. 2003.
doi:10.1049/ip-map:20030551

33. Best, S. R., "The significance of ground-plane size and antenna location in establishing the performance of ground-plane-dependent antennas," IEEE Antennas and Propagation Magazine, Vol. 51, No. 6, 29-43, Dec. 2009.
doi:10.1109/MAP.2009.5433095

34. Anguera, J., A. Andujar, M.-C. Huynh, C. Orlenius, C. Picher, and C. Puente, "Advances in antenna technology for wireless handheld devices," International Journal of Antennas and Propagation, Vol. 2013, No. 1, 1-25, 2013, [online], available: https://doi.org/10.1155/2013/838364.
doi:10.1155/2013/838364

35. Anguera, J., C. Picher, A. Bujalance, and A. Andujar, "Ground plane booster antenna technology for smartphones and tablets," Microwave and Optical Technology Letters, Vol. 58, No. 6, 1289-1294, 2016, [online], available: https://onlinelibrary.wiley.com/doi/abs/10.1002/mop.29788.
doi:10.1002/mop.29788

36. Yoon, H. S. and S. O. Park, "A dual-band internal antenna of PIFA type for Bluetooth/WLAN in mobile handsets," 2007 IEEE Antennas and Propagation Society International Symposium, 665-668, Jun. 2007.
doi:10.1109/APS.2007.4395581

37. Serra, A. A., P. Nepa, G. Manara, and R. Massini, "A low-profile linearly polarized 3D PIFA for handheld GPS terminals," IEEE Transactions on Antennas and Propagation, Vol. 58, No. 4, 1060-1066, Apr. 2010.
doi:10.1109/TAP.2010.2041162

38. Khan, P., A. Abdullah Al-Hadi, P. J. Soh, M. T. Ali, S. S. Al-Bawri, and Owais, "Design and optimization of a dual-band sub-6GHz four port mobile terminal antenna performance in the vicinity of user's hand," Progress In Electromagnetics Research C, Vol. 85, 141-153, 2018.
doi:10.2528/PIERC18050101

39. Nguyen-Trong, N., A. Piotrowski, and C. Fumeaux, "A frequency-reconfigurable dual-band low-profile monopolar antenna," IEEE Transactions on Antennas and Propagation, Vol. 65, No. 7, 3336-3343, Jul. 2017.
doi:10.1109/TAP.2017.2702664

40. Wang, D., G. Wen, and Q. Rao, "A 3D compact pent-band antenna for wireless mobile communication," 2008 IEEE Antennas and Propagation Society International Symposium, 1-4, Jul. 2008.

41. Li, G., H. Zhai, T. Li, X. Y. Ma, and C.-H. Liang, "Design of a compact UWB antenna integrated with GSM/WCDMA/WLAN bands," Progress In Electromagnetics Research, Vol. 136, 409-419, 2013.
doi:10.2528/PIER12120604

42. Alibakhshikenari, M., B. S. Virdee, and E. Limiti, "Triple-band planar dipole antenna for omnidirectional radiation," Microwave and Optical Technology Letters, Vol. 60, No. 4, 1048-1051, 2018, [online], available: https://onlinelibrary.wiley.com/doi/abs/10.1002/mop.31098.
doi:10.1002/mop.31098

43. Alibakhshikenari, M., B. S. Virdee, A. Ali, and E. Limiti, "Miniaturised planar-patch antenna based on metamaterial L-shaped unit-cells for broadband portable microwave devices and multiband wireless communication systems," IET Microwaves, Antennas Propagation, Vol. 12, No. 7, 1080-1086, 2018.
doi:10.1049/iet-map.2016.1141

44. Alibakhshikenari, M., E. Limiti, M. Naser-Moghadasi, B. S. Virdee, and R. Sadeghzadeh, "A new wideband planar antenna with band-notch functionality at GPS, Bluetooth and WiFi bands for integration in portable wireless systems," AEU — International Journal of Electronics and Communications, Vol. 72, 79-85, 2017, [online], available: http://www.sciencedirect.com/science/article/pii/S1434841116309955.
doi:10.1016/j.aeue.2016.11.023

45. Sravani, P. and M. Rao, "Design of 3D antennas for 24 GHz ISM band applications," 2015 28th International Conference on VLSI Design, 470-474, Jan. 2015.
doi:10.1109/VLSID.2015.85

46. Meneendez, L. G., O. S. Kim, F. Persson, M. Nielsen, and O. Breinbjerg, "3D printed 20/30-GHz dual-band offset stepped-reflector antenna," 2015 9th European Conference on Antennas and Propagation (EuCAP), 1-2, Apr. 2015.

47. Gjokaj, V., P. Chahal, J. Papapolymerou, and J. D. Albrecht, "A novel 3D printed Vivaldi antenna utilizing a substrate integrated waveguide transition," 2017 IEEE International Symposium on Antennas and Propagation USNC/URSI National Radio Science Meeting, 1253-1254, Jul. 2017.

48. Jofre, L., B. A. Cetiner, and F. D. Flaviis, "Miniature multi-element antenna for wireless communications," IEEE Transactions on Antennas and Propagation, Vol. 50, No. 5, 658-669, May 2002.
doi:10.1109/TAP.2002.1011232

49. Harrington, R., "On the gain and beamwidth of directional antennas," IRE Transactions on Antennas and Propagation, Vol. 6, No. 3, 219-225, Jul. 1958.
doi:10.1109/TAP.1958.1144605

50. Ramırez Arroyave, G. A. and J. L. Araque Quijano, "Broadband characterization of 3D printed samples with graded permittivity," 2018 International Conference on Electromagnetics in Advanced Applications (ICEAA), 584-588, Sep. 2018.
doi:10.1109/ICEAA.2018.8520349

51. Arroyave, G. A. R. and J. L. A. Quijano, "Evaluation of additive manufacturing processes for 3-D multiband antennas," 2018 International Conference on Electromagnetics in Advanced Applications (ICEAA), 589-592, Sep. 2018.
doi:10.1109/ICEAA.2018.8520514