Vol. 85
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2019-10-05
Artificial Dielectric Superstrate Loaded Antenna for Enhanced Radiation Performance
By
Progress In Electromagnetics Research M, Vol. 85, 185-194, 2019
Abstract
This paper presents a novel engineered artificial dielectric superstrate for improving the radiation characteristics of a CPW-fed planar antenna. Even though the permittivity of the material used for the superstrate is only 4.4, it attains an effective permittivity of more than 18 because of the periodic pattern printed on it. Due to the high value of effective permittivity an improvement in radiation pattern, impedance matching and gain of the antenna are obtained. From the measured results an impedance bandwidth of 374 MHz from 2.453 GHz to 2.827 GHz is observed for the antenna loaded with superstrate. The periodic pattern is fabricated on a substrate of thickness 1.6 mm, and it occupies an area of 56.45×42.48 mm2.
Citation
Devassy Tony, Valiyaveettil Sarin, Neeraj Kavalparambil Pushkaran, Kokkadan Jacob Nelson, Pezholil Mohanan, and Kesavath Vasudevan, "Artificial Dielectric Superstrate Loaded Antenna for Enhanced Radiation Performance," Progress In Electromagnetics Research M, Vol. 85, 185-194, 2019.
doi:10.2528/PIERM19062802
References

1. Alexopoulos, N. and D. Jackson, "Fundamental superstrate (cover) effects on printed circuit antennas," IEEE Transactions on Antennas and Propagation, Vol. 32, No. 8, 807-816, 1984.
doi:10.1109/TAP.1984.1143433

2. Jackson, D. and N. Alexopoulos, "Gain enhancement methods for printed circuit antennas," IEEE Transactions on Antennas and Propagation, Vol. 33, No. 9, 976-987, 1985.
doi:10.1109/TAP.1985.1143709

3. Mittra, R., Y. Li, and K. Yoo, "A comparative study of directivity enhancement of microstrip patch antennas with using three different superstrates," Microwave and Optical Technology Letters, Vol. 52, No. 2, 327-330, 2010.
doi:10.1002/mop.24898

4. Ge, Y., K. P. Esselle, and Y. Hao, "Design of low-profile high-gain EBG resonator antennas using a genetic algorithm," IEEE Antennas and Wireless Propagation Letters, Vol. 6, 480-483, 2007.
doi:10.1109/LAWP.2007.907054

5. Lee, Y. J., J. Yeo, R. Mittra, and W. S. Park, "Application of Electromagnetic Bandgap (EBG) superstrates with controllable defects for a class of patch antennas as spatial angular filters," IEEE Transactions on Antennas and Propagation, Vol. 53, No. 1, 224-235, 2005.
doi:10.1109/TAP.2004.840521

6. Chaimool, S., K. L. Chung, and P. Akkaraekthalin, "Simultaneous gain and bandwidths enhancement of a single-feed circularly polarized microstrip patch antenna using a metamaterial reflective surface," Progress In Electromagnatics research B, Vol. 22, 23-37, 2010.
doi:10.2528/PIERB10031901

7. Shaw, T., D. Bhattacharjee, and D. Mitra, "Gain enhancement of slot antenna using zero-index metamaterial superstrate," International Journal of RF and Microwave Computer-Aided Engineering, Vol. 27, e21078, 2016.

8. Kim, J. H., C. Ahn, and J. Bang, "Antenna gain enhancement using a holey superstrate," IEEE Transactions on Antennas and Propagation, Vol. 64, No. 3, 1164-1167, 2016.
doi:10.1109/TAP.2016.2518650

9. Attia, H., L. Yousefi, M. M. Bait-Suwailam, M. S. Boybay, and O. M. Ramahi, "Enhanced-gain microstrip antenna using engineered magnetic superstrates," IEEE Antennas and Wireless Propagation Letters, Vol. 8, 1198-1201, 2009.
doi:10.1109/LAWP.2009.2035149

10. Syed, W. H. and A. Neto, "Front-to-Back ratio enhancement of planar printed antennas by means of artificial dielectric layers," IEEE Transactions on Antennas and Propagation, Vol. 61, No. 11, 5408-5416, 2013.
doi:10.1109/TAP.2013.2275915

11. Sarkhel, A. and S. R. Bhadra Chaudhuri, "Enhanced-gain printed slot antenna using an electric metasurface superstrate," Applied Physics A, Vol. 122, No. 10, 934, 2016.
doi:10.1007/s00339-016-0464-2

12. Attia, H., O. Siddiqui, and O. Ramahi, "Beam tilting of single microstrip antenna using high permittivity superstrate," Microwave and Optical Technology Letters, Vol. 55, No. 7, 1657-1661, 2013.
doi:10.1002/mop.27659

13. Pirhadi, A., H. Bahrami, and J. Nasri, "Wideband high directive aperture coupled microstrip antenna design by using a FSS superstrate layer," IEEE Transactions on Antennas and Propagation, Vol. 60, No. 4, 2101-2106, 2012.
doi:10.1109/TAP.2012.2186230

14. Chen, X., T. M. Grzegorczyk, B.-I. Wu, J. Pacheco, Jr., and J. A. Kong, "Robust method to retrieve the constitutive effective parameters of metamaterials," Phys. Rev. E, Vol. 70, No. 1, 016608, 2004.
doi:10.1103/PhysRevE.70.016608

15. Buell, K., H. Mosallaei, and K. Sarabandi, "A substrate for small patch antennas providing tunable miniaturization factors," IEEE Transactions on Microwave Theory and Techniques, Vol. 54, No. 1, 135-146, 2006.
doi:10.1109/TMTT.2005.860329

16. Mukherjee, B., P. Patel, and J. Mukherjee, "A novel hemispherical dielectric resonator antenna with complementary split-ring-shaped slots and resonator for wideband and low cross-polar applications," IEEE Antennas and Propagation Magazine, Vol. 57, No. 1, 120-128, Feb. 2015.
doi:10.1109/MAP.2015.2397113

17. Sinha, M., V. Killamsetty, and B. Mukherjee, "Near field analysis of RDRA loaded with split ring resonators superstrate," Microwave and Optical Technology Letters, Vol. 60, No. 2, 472-478, 2018.
doi:10.1002/mop.30995

18. Simons, R. N., Coplanar Waveguide Cicuits, Components and Systems, John Wiley and Sons, 2001.
doi:10.1002/0471224758