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Abstract—This paper presents a novel engineered artificial dielectric superstrate for improving the
radiation characteristics of a CPW-fed planar antenna. Even though the permittivity of the material
used for the superstrate is only 4.4, it attains an effective permittivity of more than 18 because of
the periodic pattern printed on it. Due to the high value of effective permittivity, an improvement
in radiation pattern, impedance matching, and gain of the antenna are obtained. From the measured
results, an impedance bandwidth of 374 MHz from 2.453 GHz to 2.827 GHz is observed for the antenna
loaded with superstrate. The periodic pattern is fabricated on a substrate of thickness 1.6 mm, and it
occupies an area of 56.45 × 42.48mm2.

1. INTRODUCTION

The performance of printed circuit antennas used for outdoor applications were affected by
environmental hazards, severe weather conditions, etc. A superstrate layer, also called a cover layer
has been used to protect the antenna from these threats. Initially, it was assumed that when we
used a cover layer, it would adversely affect the matching and radiation performance of the antenna.
Alexopoulos and Jackson showed that by a proper selection of superstrate layer, it was possible to
enhance the radiation parameters of printed antennas [1]. In [2], transmission line analogy was used to
explain radiation from superstrate loaded antenna structure. There the authors established two dual
resonance conditions for substrate-superstrate printed antenna geometry by which better gain could
be achieved for a high value of permittivity or permeability of the superstrate. In [3], the authors
performed a comparative study of three superstrates, namely double negative slab, frequency selective
surface, and plain dielectric slab for improving directivity of microstrip antennas. The authors came
to the conclusion that the physical mechanism behind directivity enhancement was not the focussing
effect of superstrate alone. They attributed the directivity enhancement to the resonance resulting from
Fabry-Perot resonant cavity formed by the superstrate and metallic ground plane. Researchers started
showing greater interest in developing new methods by which antenna parameters can be improved by
manipulating material parameters of superstrates as well as by other means [4–13, 16]. They successfully
implemented superstrates in beam steering, enhancing gain, and improving bandwidth. Some authors
proposed EBG structures as superstrates for improving antenna parameters [4, 5, 17]. But the thickness
of the antenna was the main barrier for these structures. Kim et al. proposed a holey dielectric
superstrate for enhancing the gain of a microstrip patch antenna [8]. The effective permittivity was
controlled by changing the radius of holes in the superstrate so as to generate an in-phase electric field
which resulted in improved gain.

In this paper, a technique for improving the radiation parameters of a CPW-fed planar antenna
using a non-resonant superstrate is proposed. It is based on a novel engineered artificial dielectric with
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high value of effective permittivity. When we load an antenna with a superstrate layer having a high
value of permittivity or permeability, the gain can be enhanced [1, 2]. Simulated and experimental
results are presented. The effect of artificial dielectric on antenna reflection characteristics, gain, and
radiation pattern are investigated.

2. PERIODIC PATTERN DESIGN

For the construction of artificial dielectric, a periodic pattern is used. The pattern consists of 3×4 array
of unit cells. The geometry of the unit cell is formed in the following manner. Consider two cylinders
of same radius 2 mm and another one of radius 6 mm. All the cylinders are of negligible thickness
and made up of highly conductive material. They are placed at the centre of an FR-4 substrate of
size 14 × 14 × 1.6mm3 and relative permittivity 4.4. The thickness of the metallization etched on the
substrate is 35µm. The two cylinders of radius 2mm are shifted by 4.2 mm in opposite directions along
a straight line which makes an angle 45◦ with Y axis (Fig. 1).

Figure 1. Photograph of the superstrate and unit cell description. p = 14, a = 6 and b = 2 (units in
mm).

The array pattern is printed on an FR-4 substrate with relative permittivity 4.4, thickness 1.6 mm,
and occupies an area of 56.45 × 42.48mm2. For computing scattering parameters (S parameters) of
the periodic pattern by simulation, CST Microwave Studio is used. Along X and Y directions unit cell
boundary conditions are applied. These are combined with open boundaries along Z directions. The
open boundaries are realized by Floquet mode waveguide ports which can be used for exciting plane
waves (Fig. 2).

For characterising artificially engineered materials retrieval of effective permittivity and effective
permeability is required. The usual method is to use S parameters calculated from the incident wave

Figure 2. Assignment of Floquet ports and unit cell boundary.
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to obtain effective refractive index n and impedance z. The effective permittivity and permeability can
then be calculated directly from the expressions μ = nz and ε = n/z.

The refractive index n and impedance z of a slab of material can be obtained from the following
expressions [14, 15],
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21). k0 denotes the wave number of the incident wave in free space, and

d is the thickness of the slab. For a passive medium, the signs of the above equations are determined
by the requirement

z′ ≥ 0 (3)
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where (.)′ and (.)′′ denote the real part and imaginary part operators, respectively. Since Equation (2)
is a complex exponential, inverting it will result in a multivalued logarithmic function. Solving for
refractive index we get
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where m is the branch number of n′.
When we use the above equations for a nonhomogeneous slab, some issues need to be addressed.

We have to determine the location of the two boundaries of the effective slab. The retrieval method
will fail if the S parameters obtained are noisy. Another issue is ambiguous nature of n′ because the
logarithmic function is multivalued. All these issues are addressed in [14].

The magnitudes of reflection and transmission characteristics are illustrated in Fig. 3. No resonances
are observed in the frequency range shown in figure. Extracted values of effective permittivity and
effective permeability are shown in Fig. 4. In [15], the medium is described as having effective
permittivity independent of frequency whereas the effective permeability is a function of frequency.
From Fig. 4 it is clear that the same pattern can also be observed here, though the magnetic response
of the superstrate medium is very feeble. The effective permittivity of the superstrate medium is a
function of inter-cell capacitance.

Figure 3. Reflection and transmission characteristics of the unit cell.
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(a) (b)

Figure 4. Extracted values of (a) effective permittivity and (b) effective permeability.

3. THE REFERENCE ANTENNA DESIGN

The reference antenna shown in Fig. 5 can be obtained from a standard CPW transmission line by
applying a few modifications. First, a 50Ω CPW transmission line is designed. Standard design
equations are used to determine centre conductor width (Wf) and the gap (g) between finite ground
planes and centre conductor [18]. The two finite ground planes (g1 and g2) on either side of the centre
conductor are of equal size (Wg × Lg). For a wide range of frequencies extending up to several GHz,
there is no resonance observed for this transmission line. The ground g1 is connected to the centre
conductor using a short of width t to generate a resonance around 3.4 GHz. The resonance can be
brought to a lower frequency region by carving out a slot of length Ls in ground g1. The reference
antenna is printed on an FR-4 substrate with a dielectric constant of 4.4. Overall size of the substrate
is 45 × 21 × 1.6mm3.
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t

Lg

X

Y

ZWg
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Figure 5. Top view of the reference antenna. Ls = 13.15, Lg = 15, Sw = 1, Wf = 3, Wg = 16.6, g =
0.35 and t = 1.5 (units in mm).
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4. RESULTS AND DISCUSSIONS

4.1. Reference Antenna

The simulated and measured reflection characteristics of the antenna is shown in Fig. 6. From the
measured results, an impedance bandwidth of 325 MHz from 2.5 GHz to 2.825 GHz is observed. The
co- and cross-polar radiation patterns of the reference antenna for XZ and Y Z planes at 2.62 GHz are
shown in Fig. 7. Cross-polar isolation of more than 10 dB along boresight is observed in both planes.

The surface current distribution of the reference antenna at resonance is shown in Fig. 8. The

Figure 6. Measured and simulated reflection characteristics.

(a) (b)

Figure 7. Co and cross polar radiation pattern. (a) XZ plane. (b) Y Z plane.
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Figure 8. Surface current distribution of the reference antenna at resonance.

Figure 9. Measured gain of the reference antenna.

measured gain of the reference antenna is illustrated in Fig. 9. At the resonance frequency, a gain of
2.02 dB is observed. The simulated gain of the antenna as a function of frequency is also analyzed in
the 2–3 GHz region. Initially, there is a decrease in gain with frequency. From 2.3 GHz onwards, there
is an increase in gain with frequency. For the reference antenna an efficiency of 92.13% is obtained.

4.2. Antenna Loaded with Superstrate

A photograph of reference antenna loaded with superstrate is shown in Fig. 10.
When the antenna is loaded with superstrate, the periodic pattern with substrate provides a

parasitic loading which results in improved matching. The bandwidth is not much affected by the
presence of the superstrate. From the measured results, an impedance bandwidth of 374 MHz from
2.453 GHz to 2.827 GHz is observed for the antenna loaded with superstrate. In Fig. 11, a comparison
of reflection characteristics of the reference antenna and the antenna loaded with superstrate is done.
The variation in reflection characteristics with the variation in spacing between antenna and superstrate
is shown in Fig. 12. It can be seen that neither the resonance frequency nor the magnitude of S11 is
not much affected by the spacing variation.

It is well known that the gain of printed antennas can be improved by the use of a superstrate
with proper parameters [2]. The gain can be further increased by printing periodic pattern on the
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Figure 10. Antenna with superstrate.

Figure 11. Reflection characteristics of reference antenna with and without superstrate.

superstrate. The simulation results show that the gain of the reference antenna is 1.96 dB at resonance
frequency. The gain increases to 2.4 dB when a plain superstrate is used. When periodic pattern is
printed on the superstrate, the gain further increases to 4.13 dB.

The measured gain of the reference antenna and the gain after adding the artificial dielectric
superstrate are shown in Fig. 13. For the reference antenna at 2.65 GHz, a gain of 2.02 dB is observed.
When the superstrate is added, the gain improves to 4.46 dB. At this frequency a high value of 18 is
obtained for the effective permittivity of the artificial dielectric. Due to this high value of εr electric
field confinement occurs which results in higher gain.

The gain is also a function of spacing between the antenna and the superstrate. The simulated
results of variation in gain with respect to spacing is shown in Table 1. The optimum value of gain is
obtained when the spacing is 20 mm.

The measured two-dimensional radiation patterns of the antenna with and without superstrate in
XZ and Y Z planes at 2.65 GHz for the co-polarization case are shown in Fig. 14. In the Y Z plane the
pattern is nearly omnidirectional, and a figure of 8 pattern is observed in the XZ plane. Comparing
the radiation patterns with and without superstrate, the enhancement in gain can be clearly seen from
the figure.

It can be seen that radiation patterns are more directive when the superstrate is added, as the
superstrate directs the electromagnetic waves from the antenna towards boresight.
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Figure 12. Variation of S11 with spacing between antenna and superstrate (htofmeta — spacing
between antenna and superstrate).

Figure 13. Measured gain of the reference antenna with and without superstrate.

Table 1. Variation of gain with spacing between antenna and superstrate.

Spacing between antenna and superstrate (mm) gain (dB)
15 3.94
18 4.08
20 4.13
22 4.07
25 4.00
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(a) (b)

Figure 14. Measured two-dimensional co-polarization radiation pattern with and without superstrate
for (a) XZ plane and (b) Y Z plane.

Figure 15. Radiation pattern measurement setup.

A photograph of the experimental setup for radiation pattern measurement is shown in Fig. 15.

5. CONCLUSION

In this paper, we have propose a technique for improving gain and impedance matching for a CPW-fed
planar antenna. An artificial dielectric layer with a high value of effective permittivity is used as a
superstrate. This artificial dielectric layer is formed by printing a finite size array of 3× 4 unit cells on
an FR-4 substrate. Compared with reference antenna, a gain enhancement of 2.50 dB is obtained when
superstrate is used. The distance between the antenna and the superstrate is only λ0/6 where λ0 is the
free space wavelength. Furthermore, the artificial superstrate helps in tilting the main beam towards
boresight.
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