Vol. 85
Latest Volume
All Volumes
PIERB 109 [2024] PIERB 108 [2024] PIERB 107 [2024] PIERB 106 [2024] PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2019-08-27
A Volume-Surface Composite Scattering Model for Nonlinear Ocean Surface with Breaking Waves and Foam Layers Under High Wind Conditions
By
Progress In Electromagnetics Research B, Vol. 85, 125-142, 2019
Abstract
Electromagnetic scattering from the sea surface is of great significance in ocean remote sensing especially under high wind conditions. A novel volume-surface composite scattering model of nonlinear rough sea surfaces with breaking waves and foam layers under high wind conditions is presented in this study. Based on the semi-deterministic facet scattering model (SDFSM), using a ray tracing method combined with impedance equivalent edge currents (RT-IEEC) and vector radiative transfer theory (VRT), the backscattering characteristics of the sea surface with breaking waves and foam layers are investigated. The crest- and static-foam coverage was introduced to determine the breaking point and foam coverage distribution. The dependence of the backscattering coefficient of thesea surface with and without breaking waves and foam layers on the incident angle, wind speed, and the polarization are discussed in detail. The results of thenumerical simulations are analyzed and compared with the measured data from the relevant references which verifies the validity of our volume-surface composite scattering model. The synthetic aperture radar (SAR) image simulations of the surface with and without the breaking waves and foam layers are compared, and the combined effects of the breaking waves and whitecaps are analyzed.
Citation
Xiaoxiao Zhang, Xiang Su, and Zhen-Sen Wu, "A Volume-Surface Composite Scattering Model for Nonlinear Ocean Surface with Breaking Waves and Foam Layers Under High Wind Conditions," Progress In Electromagnetics Research B, Vol. 85, 125-142, 2019.
doi:10.2528/PIERB19062003
References

1. Ward, K. D., R. J. A. Tough, and S. Watts, "Sea clutter: Scattering, the K distribution and radar performance," Waves in Random and Complex Media, Vol. 17, No. 2, 233-234, 2007.
doi:10.1080/17455030601097927

2. Luo, G. and M. Zhang, "Investigation on the scattering from one-dimensional nonlinear fractal sea surface by second-order small-slope approximation," Progress In Electromagnetics Research, Vol. 133, 425-441, 2013.
doi:10.2528/PIER12082706

3. Wei, P. B., M. Zhang, D. Nie, and Y. C. Jiao, "Improvement of SSA approach for numerical simulation of sea surface scattering at high microwave bands," Remote Sens., Vol. 10, 1021, 2018.
doi:10.3390/rs10071021

4. Nie, D., M. Zhang, and N. Li, "Investigation on microwave polarimetric scattering from two-dimensional wind fetch- and water depth-limited nearshore sea surfaces," Progress In Electromagnetics Research, Vol. 145, 251-261, 2014.
doi:10.2528/PIER14022505

5. Li, X., B. Zhang, A. Mouche, Y. He, and W. Perrie, "Ku-band sea surface radar backscatter at low incidence angles under extreme wind conditions," Remote Sens., Vol. 9, No. 5, 474-488, 2017.
doi:10.3390/rs9050474

6. Zhang, X. X., Z. S. Wu, and X. Su, "Influence of breaking waves and wake bubbles on surface-ship wake scattering at low grazing angles," Chin. Phys. Lett., Vol. 35, 074101, 2018.
doi:10.1088/0256-307X/35/7/074101

7. Luo, W., M. Zhang, C. Wang, and H.-C. Yin, "Investigation of low-grazing-angle microwave backscattering from three dimensional breaking sea waves," Progress In Electromagnetics Research, Vol. 119, 279-298, 2011.
doi:10.2528/PIER11062607

8. Zhang, M., W. Luo, G. Luo, C. Wang, and H.-C. Yin, "Composite scattering of ship on sea surface with breaking waves," Progress In Electromagnetics Research, Vol. 123, 263-277, 2012.
doi:10.2528/PIER11100811

9. Melville, W. K. and P. Matusov, "Distribution of breaking waves at the ocean surface," Nature, Vol. 417, 58-63, 2002.
doi:10.1038/417058a

10. Churyumov, A. N. and Y. A. Kravtsov, "Microwave backscatter from mesoscale breaking waves on the sea surface," Waves Random Media, Vol. 10, 1-15, 2000.
doi:10.1088/0959-7174/10/1/301

11. Qi, C., Z. Zhao, W. Yang, Z.-P. Nie, and G. Chen, "Electromagnetic scattering and doppler analysis of three-dimensional breaking wave crests at low-grazing angles," Progress In Electromagnetics Research, Vol. 119, 239-252, 2011.
doi:10.2528/PIER11062401

12. West, J. C. and Z. Zhao, "Electromagnetic modeling of multipath scattering from breaking water waves with rough faces," IEEE Transactions on Geoscience and Remote Sensing, Vol. 40, No. 3, 583-592, 2002.
doi:10.1109/TGRS.2002.1000318

13. Trizna, D. B., "A model for Brewster angle damping and multipath effects on the microwave radar sea echo at low grazing angles," IEEE Transactions on Geoscience and Remote Sensing, Vol. 35, No. 5, 1232-1244, 1997.
doi:10.1109/36.628790

14. Luo, W., M. Zhang, C. Wang, and H.-C. Yin, "Investigation of low-grazing-angle microwave backscattering from three-dimensional breaking sea waves," Progress In Electromagnetics Research, Vol. 119, 279-298, 2011.
doi:10.2528/PIER11062607

15. Luo, G., M. Zhang, and X.-F. Yuan, "Investigation of EM scattering from electrically large sea surface with breaking wave at low grazing angles," Waves in Random and Complex Media, Vol. 23, No. 3, 226-242, 2013.
doi:10.1080/17455030.2013.804963

16. Wu, Z. S., J. P. Zhang, L. X. Guo, and P. Zhou, "An improved two-scale model with volume scattering for the dynamic ocean surface," Progress In Electromagnetics Research, Vol. 89, No. 4, 39-56, 2009.
doi:10.2528/PIER08111803

17. Fois, F., P. Hoogeboom, F. Le Chevalier, and A. Stoffelen, "Future ocean scatterometry: On the use of cross-polar scattering to observe very high winds," IEEE Transactions on Geoscience and Remote Sensing, Vol. 53, No. 9, 5009-5020, 2015.
doi:10.1109/TGRS.2015.2416203

18. Wei, Y., L. Guo, and J. Li, "Numerical simulation and analysis of the spiky sea clutter from the sea surface with breaking waves," IEEE Trans. Antennas Propag., Vol. 63, No. 11, 4983-4994, 2015.
doi:10.1109/TAP.2015.2476375

19. Li, J., M. Zhang, W. Fan, and D. Nie, "Facet-based investigation on microwave backscattering from sea surface with breaking waves: Sea spikes and SAR imaging," IEEE Transactions on Geoscience and Remote Sensing, Vol. 55, No. 4, 2311-2325, 2017.

20. Wang, P., Y. Yao, and M. P. Tulin, "An efficient numerical tank for non-linear water waves, based on the multi-subdomain approach with BEM," Int. J. Numer. Meth. Fl., Vol. 20, No. 12, 1315-1336, 1995.
doi:10.1002/fld.1650201203

21. Bonmarin, P., "Geometric properties of deep-water breaking waves," J. Fluid Mech., Vol. 209, 405-433, 1989.
doi:10.1017/S0022112089003162

22. Coatanhay, A. and Y. M. Scolan, "Adaptive multiscale moment method applied to the electromagnetic scattering by coastal breaking sea waves," Math Method Appl. Sci., Vol. 38, No. 10, 2041-2052, 2015.
doi:10.1002/mma.3405

23. Lyzenga, D. R., A. Maffett, and R. Shuchman, "The contribution of wedge scattering to the radar cross section of the ocean surface," IEEE Transactions on Geoscience and Remote Sensing, Vol. 21, No. 4, 502-505, 1983.
doi:10.1109/TGRS.1983.350513

24. Bondur, V. and E. Sharkov, "Statistical properties of whitecaps on a rough sea," Oceanology, Vol. 22, 274-279, 1982.

25. Monahan, E. C. and D. K. Woolf, "Comments on variations of whitecap coverage with wind stress and water temperature," J. phys. Oceanogr., Vol. 19, 706-709, 1989.
doi:10.1175/1520-0485(1989)019<0706:COOWCW>2.0.CO;2

26. Reul, N. and B. Chapron, "A model of sea-foam thickness distribution for passive microwave remote sensing applications," J Geophy. Res.: Oceans (1978–2012), Vol. 108, No. C10, 2003.

27. Voronovich, A. and V. Zavorotny, "Theoretical model for scattering of radar signals in Ku-and C-bands from a rough sea surface with breaking waves," Waves Random Media, Vol. 11, No. 3, 247-269, 2001.

28. Anguelova, M. D., "Complex dielectric constant of sea foam at microwave frequencies," J. Geophy. Res: Oceans, Vol. 113, No. C8, 2008.

29. Chen, H., M. Zhang, Y.-W. Zhao, and W. Luo, "An efficient slope-deterministic facet model for SAR imagery simulation of marine scene," IEEE Trans. Antennas Propag., Vol. 58, No. 11, 3751-3756, 2010.
doi:10.1109/TAP.2010.2071349

30. Zhang, X., Z.-S. Wu, and X. Su, "Electromagnetic scattering from deterministic sea surface with oceanic internal waves via the variable-coefficient gardener model," IEEE J — STARS, Vol. 11, No. 2, 355-366, 2018.

31. Cox, C., "Statistics of the sea surface derived from sun glitter," J. Mar. Res., Vol. 13, 198-227, 1954.

32. Lyalinov, M., A. Serbest, and T. Ikiz, "Perturbation method in the problem of diffraction of an obliquely incident electromagnetic plane wave by an impedance wedge and the diffraction coefficients," International Seminar, Day on Diffraction '2001, Proceedings, 29-31, 180–186, IEEE, Saint Petersburg, Russia, May 2001.

33. Syed, H. H. and J. L. Volakis, "PTD analysis of impedance structures," IEEE Trans. Antennas Propag., Vol. 44, 983-988, 1996.
doi:10.1109/8.504305

34. Huang, X.-Z. and Y.-Q. Jin, "Scattering and emission from two-scale randomly rough sea surface with foam scatterers," Proc. Inst. Elect. Eng. Microw. Antennas Propag., Vol. 142, 109-114, 1995.
doi:10.1049/ip-map:19951765

35. Tsang, L. and J. A. Kong, Scattering of Electromagnetic Waves: Advanced Topics, John Wiley & Sons, 2001.
doi:10.1002/0471224278

36. Alpers, W. and C. Rufenach, "The effect of orbital motions on synthetic aperture radar imagery of ocean waves," IEEE Trans. Antennas Propag., Vol. 27, No. 5, 685-690, 1979.
doi:10.1109/TAP.1979.1142163

37. Plant, W. J., "Microwave sea return at moderate to high incidence angles," Waves Random and Complex Media, Vol. 13, 339-354, 2003.
doi:10.1088/0959-7174/13/4/009

38. Schroeder, L., P. Schaffner, J. Mitchell, and W. Jones, "AAFE RADSCAT 13.9-GHz measurements and analysis: Wind-speed signature of the ocean," IEEE J. Oceanic Eng., Vol. 10, 346-357, 1985.
doi:10.1109/JOE.1985.1145123

39. Schroeder, L., W. Grantham, J. Mitchell, and J. Sweet, "SASS measurements of the Ku band radar signature of the ocean," IEEE J. Oceanic Eng., Vol. 7, 3-14, 1982.
doi:10.1109/JOE.1982.1145504

40. Goncharenko, Y. V. and G. Farquharson, "In ATI SAR signatures of nearshore ocean breaking waves obtained from field measurements," 2013 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), 326-329, IEEE, Melbourne, VIC, Australia, July 21–26, 2013.

41. Perlin, M., W. Choi, and Z. Tian, "Breaking waves in deep and intermediate waters," Annu. Revi. Fluid Mech., Vol. 45, 115-145, 2013.
doi:10.1146/annurev-fluid-011212-140721