1. Benedetti, M., M. Donelli, A. Martini, M. Pastorino, A. Rosani, and A. Massa, "An innovative microwave imaging technique for nondestructive evaluation: Applications to civil structures monitoring and biological bodies inspection," IEEE Transactions on Instrumentation and Measurement, Vol. 55, No. 6, 1878-1884, 2006.
doi:10.1109/TIM.2006.884287
2. Yemelyanov, K. M., N. Engheta, A. Hoorfar, and J. A. McVay, "Adaptive polarization contrast techniques for through-wall microwave imaging applications," IEEE Transactions on Geoscience and Remote Sensing, Vol. 47, No. 5, 1362-1374, 2009.
doi:10.1109/TGRS.2009.2015569
3. Woodhouse, I. H., Introduction to Microwave Remote Sensing, CRC Press, 2017.
doi:10.1201/9781315272573
4. Wagner, W., G. Bloschl, P. Pampaloni, J.-C. Calvet, B. Bizzarri, J.-P. Wigneron, and Y. Kerr, "Operational readiness of microwave remote sensing of soil moisture for hydrologic applications," Nordic Hydrology, Vol. 38, No. 1, 1-20, 2007.
doi:10.2166/nh.2007.029
5. Chandra, R., H. Zhou, I. Balasingham, and R. M. Narayanan, "On the opportunities and challenges in microwave medical sensing and imaging," IEEE Transactions on Biomedical Engineering, Vol. 62, No. 7, 1667-1682, 2015.
doi:10.1109/TBME.2015.2432137
6. Fear, E. C., X. Li, S. C. Hagness, and M. A. Stuchly, "Confocal microwave imaging for breast cancer detection: Localization of tumors in three dimensions," IEEE Transactions on Biomedical Engineering, Vol. 49, No. 8, 812-822, 2002.
doi:10.1109/TBME.2002.800759
7. Beada'a, J. M., A. M. Abbosh, S. Mustafa, and D. Ireland, "Microwave system for head imaging," IEEE Transactions on Instrumentation and Measurement, Vol. 63, No. 1, 117, 2014.
doi:10.1109/TIM.2013.2277562
8. Mojabi, P. and J. LoVetri, "Eigenfunction contrast source inversion for circular metallic enclosures," Inverse Problems, Vol. 26, No. 2, 025010, 2010.
doi:10.1088/0266-5611/26/2/025010
9. Gilmore, C. and J. LoVetri, "Enhancement of microwave tomography through the use of electrically conducting enclosures," Inverse Problems, Vol. 24, No. 3, 035008, 2008.
doi:10.1088/0266-5611/24/3/035008
10. Nemez, K., A. Baran, M. Asefi, and J. LoVetri, "Modeling error and calibration techniques for a faceted metallic chamber formagnetic field microwave imaging," IEEE Transactions on Microwave Theory and Techniques, Vol. 65, No. 11, 4347-4356, 2017.
doi:10.1109/TMTT.2017.2694823
11. Pastorino, M., "Microwave Imaging," John Wiley & Sons, Vol. 208, 2010.
12. Chen, X., Computational Methods for Electromagnetic Inverse Scattering, Wiley Online Library, 2018.
doi:10.1002/9781119311997
13. De Zaeytijd, J., A. Franchois, C. Eyraud, and J.-M. Geffrin, "Full-wave three-dimensional microwave imaging with a regularized Gauss-Newton method --- Theory and experiment," IEEE Transactions on Antennas and Propagation, Vol. 55, No. 11, 3279-3292, 2007.
doi:10.1109/TAP.2007.908824
14. Souvorov, A. E., A. E. Bulyshev, S. Y. Semenov, R. H. Svenson, A. G. Nazarov, Y. E. Sizov, and G. P. Tatsis, "Microwave tomography: A two-dimensional newton iterative scheme," IEEE Transactions on Microwave Theory and Techniques, Vol. 46, No. 11, 1654-1659, 1998.
doi:10.1109/22.734548
15. Rubæk, T., P. M. Meaney, P. Meincke, and K. D. Paulsen, "Nonlinear microwave imaging for breast-cancer screening using Gauss-Newton's method and the CGLS inversion algorithm," IEEE Transactions on Antennas and Propagation, Vol. 55, No. 8, 2320-2331, 2007.
doi:10.1109/TAP.2007.901993
16. Harada, H., D. J. Wall, T. Takenaka, and M. Tanaka, "Conjugate gradient method applied to inverse scattering problem," IEEE Transactions on Antennas and Propagation, Vol. 43, No. 8, 784-792, 1995.
doi:10.1109/8.402197
17. Franchois, A. and A. Tijhuis, "A quasi-Newton reconstruction algorithm for a complex microwave imaging scanner environment," Radio Science, Vol. 38, No. 2, 1-12, 2003.
doi:10.1029/2001RS002590
18. Kleinman, R. and P. van den Berg, "A modified gradient method for two-dimensional problems in tomography," Journal of Computational and Applied Mathematics, Vol. 42, No. 1, 17-35, 1992.
doi:10.1016/0377-0427(92)90160-Y
19. Caorsi, S., A. Massa, M. Pastorino, and A. Rosani, "Microwave medical imaging: Potentialities and limitations of a stochastic optimization technique," IEEE Transactions on Microwave Theory and Techniques, Vol. 52, No. 8, 1909-1916, 2004.
doi:10.1109/TMTT.2004.832016
20. Colton, D. and R. Kress, Inverse Acoustic and Electromagnetic Scattering Theory, Vol. 93, Springer Science & Business Media, 2012.
21. Tikhonov, A. N., "Solution of incorrectly formulated problems and the regularization method," Soviet Math. Dokl., Vol. 4, 1035-1038, 1963.
22. Hansen, P. C., "The truncated SVD as a method for regularization," BIT Numerical Mathematics, Vol. 27, No. 4, 534-553, 1987.
doi:10.1007/BF01937276
23. Xu, P., "Truncated SVD methods for discrete linear ill-posed problems," Geophysical Journal International, Vol. 135, No. 2, 505-514, 1998.
doi:10.1046/j.1365-246X.1998.00652.x
24. Hansen, P. C., "Regularization, GSVD and truncated GSVD," BIT Numerical Mathematics, Vol. 29, No. 3, 491-504, 1989.
doi:10.1007/BF02219234
25. Hansen, P. C., T. Sekii, and H. Shibahashi, "The modified truncated SVD method for regularization in general form," SIAM Journal on Scientific and Statistical Computing, Vol. 13, No. 5, 1142-1150, 1992.
doi:10.1137/0913066
26. Hansen, P. C., "Analysis of discrete ill-posed problems by means of the L-curve," SIAM Review, Vol. 34, No. 4, 561-580, 1992.
doi:10.1137/1034115
27. Hansen, P. C. and D. P. O'Leary, "The use of the L-curve in the regularization of discrete ill-posed problems," SIAM Journal on Scientific Computing, Vol. 14, No. 6, 1487-1503, 1993.
doi:10.1137/0914086
28. Mojabi, P. and J. LoVetri, "Overview and classification of some regularization techniques for the Gauss-Newton inversion method applied to inverse scattering problems," IEEE Transactions on Antennas and Propagation, Vol. 57, No. 9, 2658-2665, 2009.
doi:10.1109/TAP.2009.2027161
29. Scapaticci, R., I. Catapano, and L. Crocco, "Wavelet-based adaptive multiresolution inversion for quantitative microwave imaging of breast tissues," IEEE Transactions on Antennas and Propagation, Vol. 60, No. 8, 3717-3726, 2012.
doi:10.1109/TAP.2012.2201083
30. Scapaticci, R., P. Kosmas, and L. Crocco, "Wavelet-based regularization for robust microwave imaging in medical applications," IEEE Transactions on Biomedical Engineering, Vol. 62, No. 4, 1195-1202, 2015.
doi:10.1109/TBME.2014.2381270
31. Winters, D. W., J. D. Shea, P. Kosmas, B. D. van Veen, and S. C. Hagness, "Three-dimensional microwave breast imaging: Dispersive dielectric properties estimation using patient-specific basis functions," IEEE Transactions on Medical Imaging, Vol. 28, No. 7, 969-981, 2009.
doi:10.1109/TMI.2008.2008959
32. Grote, M. J., M. Kray, and U. Nahum, "Adaptive eigenspace method for inverse scattering problems in the frequency domain," Inverse Problems, Vol. 33, No. 2, 025006, 2017.
doi:10.1088/1361-6420/aa5250
33. Gilmore, C., P. Mojabi, A. Zakaria, S. Pistorius, and J. LoVetri, "On super-resolution with an experimental microwave tomography system," IEEE Antennas and Wireless Propagation Letters, Vol. 9, 393-396, 2010.
doi:10.1109/LAWP.2010.2049471
34. Asefi, M., G. Faucher, and J. LoVetri, "Surface-current measurements as data for electromagnetic imaging within metallic enclosures," IEEE Transactions on Microwave Theory and Techniques, Vol. 64, No. 11, 4039-4047, 2016.
doi:10.1109/TMTT.2016.2605665
35. Jeffrey, I., A. Zakaria, and J. LoVetri, "Microwave imaging by mixed-order discontinuous Galerkin contrast source inversion," 2014 XXXIth URSI General Assembly and Scientific Symposium (URSI GASS), 1-4, IEEE, 2014.
36. Jeffrey, I., N. Geddert, K. Brown, and J. LoVetri, "The time-harmonic discontinuous Galerkin method as a robust forward solver for microwave imaging applications," Progress In Electromagnetics Research, Vol. 154, 1-21, 2015.
doi:10.2528/PIER15090403
37. Den Dekker, A. and A. van den Bos, "Resolution: A survey," JOSA A, Vol. 14, No. 3, 547-557, 1997.
doi:10.1364/JOSAA.14.000547
38. Born, M., E. Wolf, A. B. Bhatia, et al. Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light, Vol. 7, Cambridge University Press, 1999.
doi:10.1017/CBO9781139644181
39. Zakaria, A., C. Gilmore, and J. LoVetri, "Finite-element contrast source inversion method for microwave imaging," Inverse Problems, Vol. 26, No. 11, 115010, 2010.
doi:10.1088/0266-5611/26/11/115010
40. Abdollahi, N., I. Jeffrey, and J. LoVetri, "A non-iterative eigenfunction-based 3D inverse solver for microwave imaging," Second URSI Atlantic Radio Science Meeting Science General Assembly (URSI-ATRASC), 2018.