
Progress In Electromagnetics Research B, Vol. 85, 1–25, 2019

Non-Iterative Eigenfunction-Based Inversion (NIEI) Algorithm
for 2D Helmholtz Equation
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Abstract—A non-iterative inverse-source solver is introduced for the 2D Helmholtz boundary value
problem (BVP). Microwave imaging within a chamber having electrically conducting walls is formulated
as a time-harmonic 2D electromagnetic field problem that can be modelled by such a BVP. The novel
inverse-source solver, which solves for contrast sources, is the first step in a two-stage process that
recovers the complex permittivity of an object of interest in the second step. The unknown contrast
sources, as well as the (permittivity) contrast, are represented using the eigenfunction basis associated
with the chamber’s shape; canonical shapes allowing for analytically defined eigenfunctions. This whole-
domain eigenfunction basis allows the imposition of constraints on the contrast-source expansion at
virtual spatial points or contours outside the imaging domain. These constraints effectively regularize
the inverse-source problem and the result is a well-conditioned matrix equation for the contrast-source
coefficients that is solved in a least-squares sense. The contrast-source coefficients corresponding to
different illuminating fields are then utilized to recover the contrast expansion coefficients using one
more well-conditioned matrix inversion. The performance of this algorithm is studied using a series of
synthetic test problems. The results of this study are promising as they compare very well with, and
at times out-perform, state-of-the-art inversion algorithms (both in terms of reconstruction quality and
computation time).

1. INTRODUCTION

Microwave Imaging (MWI) can be a powerful diagnostic tool in a wide range of applications such
as structural health monitoring [1], through-wall imaging [2], remote sensing [3, 4], and biomedical
imaging [5–7]. The latter is of interest herein because in many cases the imaging can be performed
within an imaging chamber, e.g., breast imaging, and the algorithm we describe is applicable to solving
the inverse problem governed by a Helmholtz boundary value problem (BVP). Performing MWI within
a conducting chamber can lead to various advantages as described in [8–10]. Although this algorithm is
applicable to any Helmholtz BVP, we demonstrate it for the 2D Transverse-Magnetic (TM) formulation
of MWI.

Quantitative MWI typically consists of minimizing a cost functional that is nonlinear and ill-
posed [11, 12]. The nonlinearity is typically addressed utilizing local optimization techniques such as
the Gauss-Newton [13, 14], the Conjugate gradient [15, 16], the Quasi-Newton [17], and the modified
gradient [18] techniques, or even global optimization methods [19]. These are computationally intensive
iterative procedures for minimizing a nonlinear cost-functional.

Developing robust computational techniques that deal with the ill-posedness remains a
challenge [20]. The fundamental difficulty is related to the insufficient amount of information
available to reconstruct the physical properties of interest with sufficient accuracy and resolution.
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Regularization methods implicitly or explicitly add information to help mitigate the ill-posedness.
Tikhonov regularization is probably the most well-known regularization method [21] but several others
have been developed such as those based on Singular Value Decomposition (SVD): Truncated SVD
(TSVD) [22, 23], Generalized SVD (GSVD) [24], and the Modified Truncated SVD (MTSVD) [25]. The
L-curve technique tries to balance the additional information added to the data-error functional when
using Tikhonov regularization [26, 27]. All of these can lead to a well-posed problem with a stabilized
good approximate solution of the original ill-posed problem [11, 28].

The non-iterative inversion algorithm described herein addresses the nonlinearity and ill-posedness
of the inverse problem by means of a formulation that utilizes, as basis functions, the (whole-domain)
eigenfunctions associated with the Helmholtz BVP with homogeneous Dirichlet boundary conditions.
This results in one-to-one correspondence between the contrast source and scattered field expansion
coefficients. A novel regularization approach that imposes the constraint that the contrast source is zero
outside the imaging domain is also introduced. Such a constraint is possible because of the utilization
of whole-domain basis functions whose support lies outside the imaging domain. We refer to this new
technique as the Non-Iterative Eigenfunction-based Inversion (NIEI) algorithm.

Expanding the unknown contrast function using various types of basis for electromagnetic inverse
problems was previously reported in the literature. For example, a modified gradient optimization in
conjunction with the distorted Born iterative method has been used with regularization achieved by
projecting the unknown contrast onto a finite wavelet basis [29, 30]. A patient-specific Gaussian function
basis was introduced to reduce the number of unknowns and enable solving the 3D inverse scattering
problem for breast imaging [31]. The efficiency of such projection methods and the accuracy of the
solution is influenced by the choice and number of basis functions [30].

The use of eigenfunctions of the Helmholtz BVP has already been shown to provide promising
results as reported in [8, 32]. In [8], the eigenfunction basis was discretized on a pixel-based mesh
associated with the Contrast Source Inversion (CSI) formulation of a 2D TM inverse problem. In [32],
instead of a grid-based discrete representation, the unknowns are projected on a whole-domain
eigenfunctions basis, which is iteratively adapted during the optimization procedure. Both of these
algorithms are iterative schemes. To the best of our knowledge the NIEI algorithm described herein is
the first of its kind to achieve a robust direct non-iterative inversion.

The formulation of the NIEI algorithm for the inverse source problem is presented in Section 2.
Two sets of constraints are proposed for regularization allowing the system matrix to be solved non-
iteratively for a finite number of terms in the eigenfunction basis. In Section 3, the second stage of the
algorithm that recovers the contrast profile is described. Then, in Section 4, an analysis of the NIEI
algorithm for a single source inversion is provided. Available options for regularization are evaluated in
Section 4.1. Next, in Section 5, we present the results of the contrast recovery stage for four numerical
test cases. We quantify the resolution performance of the algorithm by conducting a suitably-designed
test, similar to the test presented in [33], to illustrate the separation resolution limit of the system.
Finally, the results and the algorithm’s performance are discussed in Section 6.

2. NON-ITERATIVE CONTRAST SOURCE RECOVERY

2.1. Problem Formulation

The first stage of the NIEI algorithm is the inverse-source solver for the Helmholtz BVP. As shown
in Fig. 1 we consider an object-of-interest (OI) illuminated by a monochromatic point-source both
located within a chamber having volume V and perfect electric conducting (PEC) boundary ∂V . For
each transmitting point-source the field is measured at discreet spatial locations outside the imaging
domain, D, having boundary ∂D. We assume a 2D TM-polarized problem with only the Ez electric-field
component oriented along the axis of the chamber. The Ez field component, which we refer to as u,
satisfies the Helmholtz BVP: {

Δu(r) + k2(r)u(r) = −S(r); r ∈ V

u(r) = 0; r ∈ ∂V
(1)

where Δ represents the Laplacian operator; k is the wavenumber, defined as k2(r) = ω2εr(r)ε0μ0; ε0
and μ0 are the permittivity and permeability of free-space; and ω is the angular frequency of the source,
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Figure 1. An example of a PEC-enclosed microwave imaging problem domains.

S(r). The final goal is to determine εr(r), the complex-valued permittivity of the inhomogeneous OI,
from the measurements. The OI is assumed to be non-magnetic.

The incident field, denoted as ui, is the known field produced by source S(r) in the absence of the
OI. The difference between the total field, u(r), and the incident field is defined as the scattered field,
us � u− ui. Both ui and us satisfy inhomogeneous Helmholtz equations with different right-hand sides
but with the same constant background wavenumber k2

b = ω2εbε0μ0, and Dirichlet boundary conditions:{
Δui(r) + k2

bu
i(r) = −S(r); r ∈ V

ui(r) = 0; r ∈ ∂V (2)

and {
Δus(r) + k2

bu
s(r) = −w(r); r ∈ V

us(r) = 0; r ∈ ∂V
(3)

Here εb is the dielectric constant of the homogeneous background medium which is taken to be a
uniform constant value throughout the imaging chamber. The right-hand side of the scattered field
partial differential equation (PDE) is the contrast source, w(r), defined as w(r) � k2

bχ(r)u(r) where the
contrast, χ(r), is defined as χ(r) � (εr(r) − εb)/εb.

2.2. Eigenfunction Basis

The associated set of eigenfunctions, {vn}, and eigenvalues, {μn}, for the problem satisfy:{
Δvn(r) + k2

bvn(r) = μnvn(r); r ∈ V

vn(r) = 0; r ∈ ∂V
(4)

These form a complete orthonormal basis which we use to expand all fields as well as the contrast and
contrast-source variables: ⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩
u =

N∑
n

γt
nvn, ui =

N∑
n

γi
nvn, us =

N∑
n

γs
nvn

w =
N∑
n

γw
n vn, χ =

N∑
n

γχ
nvn

(5)

A fundamental relation between the coefficients of the scattered-field and contrast-source expansions
can be derived by applying Green’s theorem to the volume of the chamber. Writing Green’s theorem
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(using inner product notation) as

〈ψ,Δφ〉V − 〈φ,Δψ〉V ≡ 〈ψ, ∂nφ〉∂V − 〈φ, ∂nψ〉∂V (6)

and applying it to the eigenfunctions vn and the scattered field us inside V , taking into account the
boundary conditions given in Eqs. (3) and (4), we get

〈vn,Δus〉V − 〈us,Δvn〉V = 0. (7)

Substituting for the Laplacian’s from the corresponding Helmholtz equations (3) and (4), gives

μn〈vn, u
s〉V + 〈vn, w〉V = 0. (8)

Introducing the truncated expansions in Eq. (5) into Eq. (8) and using the orthonormal property
of the eigenfunctions, we arrive at the desired fundamental relation

γw = −Mγs (9)

where M is the diagonal matrix of eigenvalues, and the column vectors γw and γs store the expansion
coefficients. This represents a one-to-one relation between the contrast-source and scattered-field
coefficients: if one has access to the coefficients of the scattered field one would automatically have
the coefficients of the contrast sources. Via measurements, one typically only has the scattered field at
a finite number of discrete spatial locations outside the imaging domain, making the problem ill-posed.
None-the-less, as will now be shown, an efficient non-iterative contrast-source inverse solver can be
formulated based on this relation.

2.3. Data-equations for the Inverse-Source Solver

Making use of our expansion, data equations can be written in terms of field measurements at locations,
rx:

N∑
n

γs
nvn(rx) = us(rx); rx ∈ V (10)

N∑
n

γs
n∂ζvn(rx) = ∂ζu

s(rx); rx ∈ V. (11)

Here ∂ζ is derivative with respect to the ζ direction. The latter equation is useful when measurements
are made at the PEC boundary of the chamber. On ∂V the tangential electric field is identically zero
but the normal derivative, setting ζ = n, is related to the tangential magnetic field at the boundary
that is not zero and measurable [34]. That is, from Maxwell’s equation the magnetic-field components
for the TM-mode are related to Ez as {

∂yEz = −jωμHx

∂xEz = jωμHy
(12)

so the normal derivative of the scattered electric-field can be found by measuring the tangential scattered
magnetic-field:

∂nEz = jωμ(n̂xHy − n̂yHx) = jωμHt. (13)

As outlined in [34], collecting the magnetic field at the PEC boundary provides several practical
advantages, including a reduction in modeling error.

In matrix form, Eq. (11) can be written as

V∂γs = δ (14)

where V∂ is an R × N matrix with elements consisting of the value of the derivative of the N
eigenfunctions at the R receiver locations,

V∂ij
= ∂nvj(rxi); rx ∈ ∂V (15)

and δ is the vector of collected data, the tangential magnetic scattered-field on the boundary (for any
transmitter).
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Using the fundamental relation in Eq. (9), Eq. (14) is written as

−V∂M−1γw = δ (16)
providing a linear equation between the contrast-source coefficients and the collected data. The ill-
posedness of the linear inverse-source problem means that this matrix equation is ill-conditioned for a
large number of unknowns, requiring a regularization scheme.

2.4. Novel Regularization Approach

We have found that conventional regularization techniques, like Tikhonov and SVD, are not effective in
mitigating the ill-posedness of the inverse-source problem approximated by the truncated eigenfunction
expansion. The truncation already limits the spectrum of the approximation to, possibly, the best that
can be achieved, and increasing the truncation number, N , without introducing additional information
deteriorates the condition of matrix equation (16). Truncating the eigenfunction expansion to a suitably
low N to obtain a well-conditioned matrix equation does not provide sufficient resolution. Applying SVD
to (16) in an attempt to mitigate the ill-condition of the matrix and extend the number of eigenfunctions
utilized is not effective. Truncating the eigenfunction representation already limits the spectrum being
reconstructed and therefore the SVD technique cannot improve the solution.

Fortunately, the use of whole-domain basis functions does allow us to introduce additional
regularization that is based on incorporating prior knowledge that the contrast source is zero outside
the imaging domain. This prior information has been imposed in two different ways; one we call virtual
contours, and the other virtual test points (“virtual” because no real measurements are required).

Figure 2. An example of virtual constraints for regularization.

Virtual Contour Constraints are derived by applying Green’s Theorem to vn and us in a region
V ∗

i strictly outside the imaging domain bounded by Γi and ∂V as shown in Fig. 2. Thus, we have
μn〈vn, u

s〉V ∗
i

+ 〈vn, w〉V ∗
i

= 〈us, ∂nvn〉Γi − 〈vn, ∂nu
s〉Γi , (17)

where ∂n is the derivative with respect to the outward normal to V ∗
i along Γi. Multiple subdomains V ∗

i
can be chosen on which to enforce this constraint. The second term on the left-hand side of Eq. (17) is
zero because the contrast source, w, is zero in V ∗

i . Therefore, in matrix form, we have
(MKi −Di)γs = 0, (18)

where the Ki
mn element of the Ki matrix is defined as the inner product of two eigenfunctions over V ∗

i :

Ki
mn = 〈vn, vm〉V ∗

i
. (19)

The elements of the Di matrix are found as the line integrals
Di

mn = 〈vn, ∂nvm〉Γi − 〈vm, ∂nvn〉Γi . (20)
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Equation (18) can be applied to any arbitrary subdomain bounded by an arbitrary virtual contour Γi

and ∂V , as long as contour Γi is in V ∗ = V \D. Using the fundamental relation in Eq. (9), Eq. (18)
can be written as

(MKi − Di)M−1γw = 0, (21)

which represents a constraint on the eigenfunction expansion coefficients for the contrast source.
Virtual Test Point Constraints are obtained by simply imposing that the contrast-source must

be zero at a set of specified virtual test points, again within V ∗. This is enforced directly via the
contrast-source expansion (5):

N∑
n

γw
n vn(rj) = 0; rj ∈ V ∗. (22)

In matrix form this becomes
Vγw = 0, (23)

where V is a J ×N matrix of the N eigenfunctions evaluated at J chosen test points.
The data and constraint Equations (16), (21), and (23) are solved simultaneously by concatenating

the matrices and right-hand-sides into a final matrix equation of the form Aγw = b:⎡
⎢⎢⎢⎢⎢⎢⎣

−V∂M−1

(MK1 − D1)M−1

...
(MKI − DI)M−1

V

⎤
⎥⎥⎥⎥⎥⎥⎦

γw =

⎡
⎢⎢⎢⎣

δ

0
...
0

⎤
⎥⎥⎥⎦ (24)

where I is the number of virtual contours at which the contour constraints are imposed.
Numerical studies show that with a sufficient number of constraints the eigenfunction-expansion

truncation number, N , can be increased while retaining a well-conditioned matrix Equation (24). The
problem is simply solved in the Least-Square sense:

γw = (AT A)−1AT b (25)

Note that the well-conditioned matrix A is independent of the incident field utilized to interrogate
the OI. Thus, it remains the same over the different contrast sources corresponding to the different
fields produced by the various transmitters used to interrogate the OI. Only the right-hand side varies
with transmitter location and the ATA inversion is performed only once resulting in a very efficient
algorithm.

3. NON-ITERATIVE CONTRAST RECOVERY

The second step of the NIEI algorithm recovers the contrast utilizing all the contrast sources
reconstructed for each transmitter. The contrast expansion coefficients are linearly related to those
of the contrast-sources and can be solved for in a least-squares fashion.

We substitute the expansions (5) into the contrast source definition, w(r) � k2
bχ(r)u(r), to obtain∑

p

γw
p vp = k2

b

∑
n

∑
m

γχ
nγ

t
mvnvm. (26)

Taking the inner product of Eq. (26) with a particular eigenfunction and utilizing the orthonormality
of the eigenfunctions we obtain an interesting relation between γw, γχ and γt:

γw
p = k2

b

〈∑
n

∑
m

γχ
nγ

t
mvnvm, vp

〉
V

= k2
b

∑
n

∑
m

γχ
nγ

t
m 〈vnvm, vp〉V . (27)

This can be written concisely using a multi-index quantity

Cnmp = 〈vnvm, vp〉V (28)
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as
γw

p = k2
bCnmpγ

t
mγ

χ
n (29)

where summation over repeated indices is implied. It is convenient to write Eq. (29) in vector form by
defining a “3D matrix” C that is symmetric in its first two indices, only depends on the eigenfunctions
for the problem, and can therefore be pre-computed. Thus, we write

γw = k2
bCγ

tγχ (30)
for the vector of coefficients. Note that the operation Cγt returns a matrix.

Assuming a total of T transmitters, we denote the total-field expansion coefficients corresponding
to transmitter k as, γtk , which can be written in terms of the scattered and incident-field coefficients
for the same transmitter as

γtk = γik + γsk , k = 1, ..., T. (31)

Using Eq. (9), γsk can be written in terms of γwk to give

γtk = γik − M−1γwk (32)

and Eq. (30) becomes
γwk = k2

bC
(
γik − M−1γwk

)
γχ (33)

One such equation is available for each transmitter, so we simply concatenate all the equations to form
the over-determined system: ⎡

⎢⎣
k2

bC(γi1 − M−1γw1)
...

k2
bC(γiT − M−1γwT )

⎤
⎥⎦ γχ =

⎡
⎢⎣

γw1

...
γwT

⎤
⎥⎦ (34)

that is solved in the least-squared sense for the contrast coefficients γχ. This final equation has been
found to be well-conditioned.

4. CONTRAST SOURCE RECONSTRUCTION STUDY

The NIEI algorithm can be applied to chambers of any shape, however, the choice of a canonical
shape gives us the ability to formulate the eigenfunction basis functions analytically. The orthonormal
eigenfunctions and corresponding eigenvalues for a rectangular chamber defined as the region 0 < x < A
and 0 < y < B are ⎧⎪⎪⎨

⎪⎪⎩
vn(x, y) =

2√
AB

sin
(
p(n)π
A

x

)
sin

(
q(n)π
B

y

)

μn = k2
b −

(
p(n)π
A

)2

−
(
q(n)π
B

)2 (35)

where p(n) and q(n) are mode numbers along x and y coordinates respectively.
For the purposes of this study the imaging chamber is chosen to have a square shape with side

dimensions of one meter. The receivers are positioned on the PEC boundary as depicted in Fig. 3, where
the normal derivative of the electric field is utilized as the data. A total of 40 receivers are employed for
collecting data generated from 16 independent transmitters that are placed inside the PEC chamber a
distance of 10 cm away from the boundary.

All results are based on synthetically generated data using the Discontinuous Galerkin Method
(DGM) as the forward problem solver [35]. For the results presented herein, 648 nodes and 1294
triangular elements of order 8 were utilized to generate the synthetic data. Random noise was added
to all synthetic data according to the following formulas:{

δnoisy
r = real{δ} + 5% ×Mr ×Rr

δnoisy
i = imag{δ} + 5% ×Mi ×Ri

(36)

where Mr and Mi are the arithmetic means of the real and imaginary parts of all synthetically collected
data, δ. The random variables Rr and Ri are uniformly distributed between −1 and 1.
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Figure 3. (a) Transmitters and receivers orientation. (b) Imposed constraints in form of virtual test
points.

Figure 4. True complex permittivity profile.

The configuration for the first test problem is shown in Fig. 4 where we consider a target consisting
of two circular lossy dielectric cylinders both having a radius of 5 cm. This target is placed off-center,
towards the top-right corner of the imaging domain, which is chosen as a square region of 40 cm sides
centered within the chamber. The cylinders are 5 cm apart and both have a complex permittivity of
εr = 3 − j0.05. The regularization of the problem was achieved using 1736 virtual test points located
outside the imaging domain. The location of these virtual test points is depicted in Fig. 3.

The reconstructed contrast sources associated with transmitter number 12, which is located at the
point (−0.3, 0.4) within the chamber, are shown in Fig. 5. These results are obtained at 550 MHz, which
corresponds to a frequency that is well above the cut-off frequency for the chamber, ∼ 212 MHz. The
left column shows the real and imaginary parts of the “True” contrast source, which are based on the
numerically obtained total field from the DGM forward solver. The middle column is the “True” field
expanded with the 625 eigenfunction basis; we denote this shows the “Best” representation in the chosen
number of eigenfunctions. The reconstructed contrast source, using the same 625 eigenfunction basis, is
shown in the right column. The black contours show the location of the cylinders in the forward model.
Note that only the 40 cm square imaging domain is shown in these images.

The reconstructed contrast source is in good agreement with the “Best” and “True” profiles. Both
the “Best” and reconstructed plots clearly show some of the resulting Gibbs phenomenon due to the
truncation of the expansions. In addition, a slight inward shift can be observed in the reconstructed
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Figure 5. Real (top) and imaginary (bottom) of complex contrast source, w(r). From left to right:
“True”: numerically obtained by the DGM forward solver, “Best”: expanded “True” profile with 625
eigenfunction basis, the reconstructed w(r) by recovering 625 unknown coefficients.

contrast source images compared to the “True” and “Best” images. The right most cylinder is
reconstructed with a greater shift towards the center of the imaging domain than the left most cylinder.
Numerical experiments indicate that this is due to the virtual point constraints being located closer
to the right most cylinder. The constraints also seem to reduce the effect of Gibbs phenomenon in
the reconstructions: we notice fewer oscillations in the reconstructed contrast sources compared to the
“Best” representations using the same number of eigenfunctions.

Figure 6 presents the corresponding reconstructed scattered field. In Fig. 7 the real parts of the
“Best” and reconstructed contrast-source and scattered-field coefficients are plotted. An increasing
coefficient number generally indicates an increasing spatial frequency content of the eigenfunction
although the ordering has not been chosen in such a way that the frequency content increases
monotonically with the coefficient number. The plots clearly show that the scattered-field coefficients
decay much faster than the contrast-source coefficients; the scattered-field coefficients quickly decay
to almost zero while the contrast-source coefficients remain large even for coefficients associated with
higher spatial frequency content. The low-pass filtering effect of the fundamental relation in Eq. (9),
which relates contrast-source to scattered-field coefficients, is clearly evident. Higher spatial frequency
information is not available in the scattered field, which constitutes the data for the inverse problem,
and this contributes to the ill-posedness of the problem.

To investigate the algorithm’s performance with respect to the truncation of the eigenfunction
basis, we examined reconstructions using different numbers of eigenfunctions. The root-mean-square-
error, RMSE, in the reconstructed contrast-sources and the scattered-fields (compared to the “Best”
representation) is used to quantify the algorithm’s performance. The RMSE is calculated both on
the image (by calculating the norm over the square grid of the image) as well as via the coefficients,



10 Abdollahi, Jeffrey, and LoVetri

True Us
12

-0.5

0

0.5

-0.5 0 0.5
-0.5

0

0.5

Best Us
12

-0.5 0 0.5

Reconstructed Us
12

-0.5

0

0.5

-0.5 0 0.5

-0.01

-0.005

0

0.005

0.01

x [m]

y 
[m

]

x [m] x [m]

y 
[m

]

Figure 6. Real (top) and imaginary (bottom) of complex scattered field, us(r). From left to right:
“True”: numerically obtained by the DGM forward solver, “Best”: the expanded “True” scattered field
with 625 eigenfunctions, the reconstructed us(r) by recovering 625 unknown coefficients.

according to the formula:

RMSE =

∥∥FBest − FRec
∥∥

‖FBest‖ (37)

where FRec and FBest are, respectively, the reconstructed and the “Best” fields or their coefficients.
Figure 8 shows the calculated RMSE using 25 to 625 eigenfunctions. The left plot, corresponding

to the contrast source error, indicates that increasing the number of eigenfunctions to a certain point,
256, results in a continual reduction of the RMSE. Increasing N past 256 increases the error. This is
quite different in the right plot, which corresponds to the scattered field, where the RMSE remains low
after again reaching a minimum around 256. This, again, quantitatively illustrates the low-pass filtering
effect of the fundamental relation in Eq. (9). It can be shown analytically that the relative errors in the
contrast-source and scattered-field coefficients are identical, but because the high-frequency content of
the scattered fields is much less than that of the contrast sources these relative errors contribute much
more to the RMSE of the contrast sources.

4.1. Evaluation of the Two Regularization Schemes

To illustrate the remarkable impact that imposing virtual constraints has on regularizing the system
matrix, we evaluate the algorithm’s performance under three different scenarios utilizing one or more of
the four different sets of constraints depicted in Fig. 9. The number of virtual test points and contours
for each constraint set are given in Table 1. For all three test scenarios, results for transmitter 12,
depicted in Fig. 3, are reported but the results are independent of which transmitter is considered.

Scenario One: In this case, constraint Set III, consisting of 1736 virtual test points, is utilized
for regularizing the system matrices corresponding to the use of different numbers of eigenfunctions,
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(a) (b)

Figure 8. (a) RMSE of reconstructed contrast source and its corresponding coefficients γw. (b) RMSE
of reconstructed scattered field and its corresponding coefficients γs.

N . A larger N introduces higher spatial frequencies into the approximation and generally results in a
more poorly conditioned system matrix leading to numerical instability in the approximated solution.
Therefore, a trade-off between resolution and stability needs to be considered.

Data are collected at 40 receivers, and N is varied from 25 to 625. The system matrix, A,
before imposing the regularization represents the 40 data equations in the N unknown coefficients
of the contrast-source expansion. The condition numbers of the matrix product ATA before and after
imposing the regularization of constraint Set III are shown in Fig. 10, in log10 format. As can be seen
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from the figure, for the same number of data points, increasing the eigenfunction expansion truncation
number results in a higher condition number, however, by introducing the regularization we are able
to considerably improve the condition numbers by an order of almost 1020, resulting in a stabilized
well-conditioned solution.

Scenario Two: In this case, for a fixed number of data points and number of eigenfunctions, 40
and 625, respectively, the four different sets of virtual constraints are imposed to regularize the system
matrix. The condition number of this matrix before regularization is 4.23×1029. The condition number

Table 1. Virtual constraints, number of constraint equations, and condition number of ATA at contrast
source recovery stage of solving for 625 eigenfunction coefficients at 550 MHz. Constraint sets I, II, III
and IV correspond to results presented in Fig. 11.

Constraint

Virtual

Test

Points

Virtual

Contours

Number of

Constraint

Equations

A matrix

size

Initial

Condition

Number∗

Condition

Number after

Regularization

Set I 336 0 336 376 × 625 4.23 × 1029 1.87 × 1018

Set II 336 3 2211 2251 × 625 4.23 × 1029 2.66 × 1015

Set III 1736 0 1736 1776 × 625 4.23 × 1029 5.75 × 1011

Set IV 8400 0 8400 8440 × 625 4.23 × 1029 1.74 × 1010

∗ Condition number of AT A before concatenating constraints’ equations. In this case size of A is 40 × 625.
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Figure 11. Real (top) and imaginary (bottom) parts of contrast source, w(r), when different constraint
sets are imposed. From left to right: “Best”, reconstruction results, recovering 625 unknown coefficients,
with constraint set I, II, III and IV shown in Fig. 9.

of the system matrix after imposing these constraint sets are shown in Table 1, which also includes the
number of constraint equations that are added to the data equations. The reconstructed contrast sources
for these four cases are shown in Fig. 11. It can be seen that when constraint Set I, consisting of only
336 virtual test points, is imposed, although the condition number has gone down from 4.23 × 1029 to
1.87×1018, the system matrix is not regularized to the point that accurate results can be reconstructed.
By adding three square virtual contours to the 336 test points, that is, using constraint Set II, we add
a total number of 2211(= 336 + 3 × 625) constraint equations, which results in a substantially reduced
condition number of 2.66× 1015. In other words, the result of concatenating these constraint equations
to the data equations is to effectively create more linear independence between the columns of the
system matrix, A, thereby reducing the condition number of the ATA matrix product. The result of
imposing constraint Set III indicates that adding more virtual contours also leads to an improvement
in the condition number.

Studying the algorithm’s performance for different combinations of constraints, it is observed that,
for stabilizing the system, one has the choice of either imposing a large number of virtual test points
or keeping the number of test points low and adding virtual contours. There was not a significant
difference in the obtained results employing either of these techniques. However, the computational
time for obtaining an inversion was generally found to be less when only virtual test points are imposed
than when, in addition, one introduces virtual contours. This can be seen, e.g., for the case of Constraint
Set III, where the number of constraint equations concatenated with the main data equations is less
compared with imposing Constraint Set II. From the results of imposing Constraint Sets III and IV, it
can be seen that although the number of virtual test points are almost 5 times more in Constraint Set
IV than in III, the condition number has not changed significantly. The images in the two right-most
columns of Fig. 11 provide confirmation that the improved condition number may not be warranted for
this case. This also confirms the important fact that imposing too many virtual constraints does not
have a negative impact on the contrast-source reconstruction.

Scenario Three: Now, the eigenfunction-based regularization approach is compared with the
Tikhonov and SVD regularization methods. We apply these three approaches to regularize the poorly
conditioned system matrix of size 40×625. For eigenfunction-based regularization scheme, the constraint
Set III is imposed. For both Tikhonov and SVD regularization schemes, the regularization parameter is
selected according to the L-curve criterion, and the initial guess of zero is chosen for the Tikhonov
regularization method. The reconstructed contrast source coefficients by means of applying these
three regularization techniques are shown in Fig. 12. As a benchmark, the “Best” contrast source
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Figure 12. Real (top) and imaginary (bottom) parts of reconstructed contrast source coefficients of
625 eigenfunction basis at 550 MHz by means of eigenfunction-based, Tikhonov and SVD regularization
methods.

coefficients are also included in this plot. It can be seen that all three regularization approaches result
in comparable coefficients with the “Best” coefficients for a few first coefficients. However, the Tikhonov
and SVD results are very small and close to zero for remaining coefficients. That is, the high spatial
frequency details are suppressed. With eigenfunction-based regularization more non-zero coefficients
are reconstructed. The resulting contrast source global profiles are illustrated in Fig. 13, which again
confirms that the Tikhonov and SVD regularization approaches control the ill-posedness with the price
of suppressing the higher spatial frequency components.

5. CONTRAST RECOVERY STAGE STUDY

The performance of the contrast recovery stage is studied next by presenting some numerical test cases
for various targets. Utilizing the reconstructed contrast source coefficients for several interrogating fields
one can form the well-conditioned matrix equation (34). We first present the recovered contrast profiles
obtained when different virtual constraints are imposed for regularization as discussed in Section 4.1.
Then for the test case introduced in Section 4, a separation resolution study similar to the one reported
in [33] is conducted. We compare the eigenfunction inversion results with the results of a Discontinuous
Galerkin Method Contrast Source Inversion (DGM-CSI) algorithm [36]. In addition, for the same test
case and three other test cases, results of varying the truncation number N are presented.

For all the tests considered here, the synthetic MWI system is the same as previously introduced
in Section 4, and depicted in Fig. 3. For all tests, the number of constraints was kept the same, 1736
virtual test points populated outside the imaging domain. Synthetic data was collected using the DGM
forward solver as before and 5% noise was added.



Progress In Electromagnetics Research B, Vol. 85, 2019 15

x [m]
0.20.10-0.2 -0.1

y 
[m

]

0.2

0.1

0

-0.2

-0.1
-50

0

50

100

-3

-2

-1

0

1

2

x [m]
0.20.10-0.2 -0.1

x [m]
0.20.10-0.2 -0.1

x [m]
0.20.10-0.2 -0.1

y 
[m

]

0.2

0.1

0

-0.2

-0.1

Best Eigenfunction-based Tikhonov SVD

Figure 13. Real (top) and imaginary (bottom) parts of contrast source profile, w(r), when different
regularization methods are employed. From left to right: “Best”, eigenfunction-based regularization,
Tikhonov regularization, SVD regularization.

Best (r)
Reconstructed (r)

with Constraint Set I 
Reconstructed (r)

with Constraint Set II
Reconstructed (r)

with Constraint Set III
Reconstructed (r)

with Constraint Set IV

x [m]
0.20.10-0.2 -0.1

y 
[m

]

0.2

0.1

0

-0.2

-0.1

y 
[m

]

0.2

0.1

0

-0.2

-0.1

x [m]
0.20.10-0.2 -0.1

x [m]
0.20.10-0.2 -0.1

x [m]
0.20.10-0.2 -0.1

x [m]
0.20.10-0.2 -0.1

3.5

3

2.5

2

1.5

1

0

-0.01

-0.02

-0.03

-0.04

-0.05

-0.06

Figure 14. Real (top) and imaginary (bottom) parts of permittivity, εr(r), when different constraint
sets are imposed. From left to right: “Best”, reconstruction results, recovering 625 unknown coefficients,
with constraint set I, II, III and IV shown in Fig. 9.

5.1. Regularization Study

We present the reconstructed contrast using the four different sets of 16 contrast sources obtained from
the four different sets of virtual constraints depicted in Fig. 9. The reconstructed complex permittivity
profiles are shown in Fig. 14, where the “Best” permittivity profile, expanding the “True” permittivity
profile using 625 eigenfunctions, is included to provide a benchmark. The black contours are the forward
model target contours. It can be seen that the NIEI algorithm’s stage-two contrast recovery is robust
to variations in imposing virtual constraints, varying in number or combination of constraints, as long
as the utilized contrast sources are obtained from a well-regularized inverse-source solver. This is an
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important observation that confirms that one has flexibility in choosing an appropriate virtual constraint
set, with various sets producing acceptable results as compared to the “Best” obtainable solution. As
was mentioned in Section 3, as long as regularization is achieved the only difference between these
approaches is the required computational time.

5.2. Separation Resolution Study

The algorithm’s resolution performance is next quantified by performing a set of simple tests. One
method of evaluating a MWI system’s performance is to measure its ability to resolve two dielectric
targets, each of which individually produces a scattered field of similar strength, called the separation
resolution [33, 37]. For MWI the separation resolution is target-dependent due to the nonlinearity
of inverse scattering problem. However, this measure can provide a good indicator of the system’s
performance. The separation resolution utilizes Rayleigh’s criterion as a metric for determining the
performance of the system [38]. To determine if two targets are resolved, we consider the line connecting
the centres of targets. Let Umin be the minimum reconstruction value between targets along the line
and Umax be the first maximum on the line closest to Umin. According to the Rayleigh’s criterion, the
targets are resolved if the ratio Umin/Umax is less than 0.81.

The test case considered here consists of two circular cylinders each having a radius of 5 cm (∼ λ/11,
where λ is the free-space wavelength at f = 550 MHz). The two cylinders are placed off-center within the
MWI system as depicted in Fig. 3. The background medium is free space and the complex permittivity
of both objects is εr = 3 − j0.05. The separation between the two objects is varied from a maximum
of λ/5 (∼ 11 cm) to a minimum of λ/60 (∼ 0.9 cm). The line in the image upon which the Rayleigh
criterion is applied in the image is the line that passes through centers of two objects. Fig. 15 plots the
resolution ratio that is obtained for all separation distances. In this plot the dashed line is the indicator
of resolvability, 0.81. As can be seen, the algorithm was able to achieve the “Best” possible resolution
of λ/45 in the image of the real part of the permittivity, whilst the resolution ratio in the image of the
imaginary part of the permittivity was always below 0.81.

Figure 15. The resolution ratio of the real and imaginary parts.

The real and imaginary parts of the “Best” and reconstructed images with a separation of λ/10 and
λ/35 are illustrated in Fig. 16. The images titled as “Best” in the second column from left are the “True”
permittivity profiles expanded with 625 eigenfunctions. The third column presents the reconstructed
complex permittivity profile by recovering 625 unknown eigenfunction basis coefficients and the last
column shows the DGM-CSI inversion results with 1560 triangular elements of order 4 and 23400 DGM
nodes, after 150 iterations. The NIEI algorithm resolves the two targets whereas DGM-CSI is unable
to resolve them. Note that these are considered to be high contrast targets, which represent a challenge
for any MWI system.



Progress In Electromagnetics Research B, Vol. 85, 2019 17

(a)

(b)

Figure 16. Real and imaginary parts of complex permittivity for two separation distances of
5.5 cm ∼ λ/10 and 1.6 cm ∼ λ/35. From left to right: “True”, “Best” (true permittivity expanded
with 625 eigenfunctions), Reconstructed (results of NIEI using 625 coefficients, DGM-CSI after 150
iterations, (a) separation distance: 5.5 cm ∼ λ/10, (b) separation distance: 1.6 cm ∼ λ/35.

5.3. Eigenfunction Expansion Truncation Study

Contrast recovery performance is studied next for four test cases using different truncations of the
eigenfunction basis, N = 121, 225, 361 and 625.

Test I — same size adjacent circular cylinders with same electrical properties: The first test case is
the case that has been introduced and studied in Sections 4 and 4.1. The “True” complex permittivity
profile of this test case is shown in the left column of Fig. 17. The set of first two rows show the real part
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Figure 17. Test I — Real (first two rows) and imaginary (second two rows) of complex permittivity
profile. “True” (left column), “Best” and reconstructed with 121, 225, 361 and 625 eigenfunctions (from
second left column to right).

of the complex permittivity profile and the second set of two rows show the imaginary part. The first
row in each set is the “Best” representation of “True” complex permittivity profile expanded with 121,
225, 361, and 625 eigenfunctions from left to right respectively, and the second row in each set shows
the reconstructed images with 121, 225, 361, and 625 eigenfunctions, from left to right respectively. All
reconstructions are obtained at 550 MHz. In general, there is good agreement between the best and
reconstructed images for both the real and imaginary parts under different truncation numbers. A close
look at the reconstructions reveals that increasing the truncation number not only helps one to obtain
a better resolution by reconstructing coefficients for eigenfunctions containing higher spatial frequency
information but also reconstructs the permittivity closer to the true value.

Similar to the results shown in Fig. 5, one can see the right most object is reconstructed with a
greater shift towards the center of the imaging domain than the left most object, which is due to the
fact that the virtual test point constraints are located closer to the right most object than the left most
object.

Test II — diagonally-oriented different sized square cylinders with different electrical properties:
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Figure 18. Test II — Real (first two rows) and imaginary (second two rows) of complex permittivity
profile. “True” (left column), “Best” and reconstructed with 121, 225, 361 and 625 eigenfunctions (from
second left column to right).

This Forward model consists of two square cylinders, one with sides of 9 cm (∼ λ/6) and one with sides
of 7 cm (∼ λ/8) at 550 MHz. As before free space is taken as the background medium. The larger square
has a complex permittivity of εr1 = 2 − j0.05 while the smaller one has εr2 = 1.3 − j0.03. The real
and imaginary parts of the forward model, the “Best” and reconstructed permittivity profile images
with 121, 225, 361 and 625 eigenfunctions are illustrated in Fig. 18. Similar observations can be made
as in Test I, the reconstructed images for both the real and imaginary parts of the permittivity are
comparable with the “Best” for different truncation numbers. It can be seen that reconstructing the
smaller object having a smaller contrast is more difficult. This is expected due to the presence of the
larger object that scatters greater electromagnetic energy.

Test III — same size adjacent circular cylinders with same electrical properties embedded in third
medium: This model includes two circular cylinders, each having a radius of 5 cm and complex
permittivity of εr1 = 3 − j0.05, that are bounded by a third circular cylinder having a radius of
15 cm placed off-center with respect to the two interior cylinders. The outer embedding cylinder has a
complex permittivity of εr2 = 1.4 − j0.01. The background medium is again free space and the test is
conducted at 650 MHz.
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Figure 19. Test III — Real (first two rows) and imaginary (second two rows) of complex permittivity
profile. “True” (left column), “Best” and reconstructed with 121, 225, 361 and 625 eigenfunctions (from
second left column to right).

As can be observed from the results shown in Fig. 19, Test III is a more challenging inverse problem
compared with Test I which contained only the interior cylinders. However, the NIEI algorithm is able
to resolve the two circular targets within the third medium.

Test IV — diagonally-oriented different sized circular cylinders with different electrical properties
embedded in a third medium: This model consists of two circular cylinders having radii of 4 cm and
3.5 cm, placed off-center and diagonally oriented. These two cylinders are enclosed by a third circular
cylinder having a radius of 15 cm, which itself is placed off center in the chamber. Complex permittivities
of εr1 = 2.1 − j0.05 and εr2 = 1.6 − j0.03 are considered for the two inner cylinders, and a complex
permittivity of εr3 = 1.4 − j0.01 is used for the outer cylinder. The background medium is free space
and the test is conducted at 650 MHz. The real and imaginary parts of complex permittivity of the
forward model, “Best” and reconstructions with 121, 225, 361 and 625 eigenfunctions are illustrated
in Fig. 20. Despite the complexity of this test case, the NIEI algorithm reconstructed the complex
permittivity profiles well. Some artifacts can be seen in the real part of the reconstructed permittivity
profile with 625 basis, however the imaginary part is very well reconstructed. In general, from the
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Figure 20. Test IV — Real (first two rows) and imaginary (second two rows) of complex permittivity
profile. “True” (left column), “Best” and reconstructed with 121, 225, 361 and 625 eigenfunctions (from
second left column to right).

results obtained from these four test cases, it is observed that small high-frequency ripples appear in
the “Best” images, due to the Gibbs-phenomenon, whereas these are suppressed in the reconstructions,
most likely due to applying the regularization constraints that force the contrast sources to be zero
outside the imaging domain at several virtual points or contours. To obtain a quantitative evaluation
of the reconstruction results, the RMSE is calculated for the obtained results of Test I utilizing (37).
The RMSE is calculated both pixel-wise on the reconstructed image of the contrast as well as utilizing
the corresponding coefficients, and depicted in Fig. 21. A reduction in RMSE is evident as the number
of eigenfunctions increases to approximately 100, however, the RMSE increase when the number of
unknowns increases past 100. Clearly, the contrast-source error is contributing to the error we’re seeing
in the contrast reconstruction, as the RMSE follows a similar pattern as was observed for the RMSE
for the contrast source reconstruction as a function of increasing the truncation number (shown in
the left plot of Fig. 8). Although, the RMSE increases with increasing truncation number, from the
reconstructed images shown in Fig. 17, it is observed that with a larger truncation number higher spatial
frequency information and more accurate dielectric property values are achieved. The spatial shift in
the reconstructed targets may be skewing the RMSE numbers.
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Figure 21. Test I — RMSE of the real and imaginary parts of reconstructed contrast and its
corresponding coefficients, γχ, at 550 MHz.

6. DISCUSSION

A unique feature of the NIEI algorithm is that it does not require a mesh for discretizing the spatial
domain and it can be developed fully analytically for chambers having a canonical shape. That is, the
eigenfunctions can be written analytically. Thus, the only numerical approximation involved consists
of truncating the expansions. This automatically introduces a level of regularization into the inversion
algorithm. This fact was reported in [32], and is effective because of the removal of higher spatial
frequencies from consideration which cannot be reconstructed using only information obtained from
scattered field data. The low-pass filtering of the inverse-source operator means that high spatial
frequency information of the contrast sources just isn’t available in the scattered field.

The unique regularization technique of constraining the contrast sources to be zero outside the
imaging domain is enabled because of the use of a whole-domain basis. Such a technique could not be
formulated on a mesh. It effectively adds new virtual information that dramatically improves the
condition number of the system matrix and enables one to solve the inverse-source problem non-
iteratively. Via the derived fundamental relation between the scattered field and contrast source
coefficients, Equation (9), this virtual information regarding the contrast sources is transferred to the
scattered field (which is not zero outside the imaging domain).

The results of inverting several relatively difficult test cases confirm the algorithm’s ability to
recover both contrast sources and contrast profiles with a high level of accuracy in the lower spatial
frequencies of the problem, when compared to the “True” and “Best” profiles. For the test case shown
in Section 5.3, the algorithm was able to resolve two objects as close as λ/45. This is a very high level
of resolution in MWI and comparable to that obtainable using a state-of-the-art imaging algorithm
like the Finite-Element Contrast Source Inversion (FEM-CSI) algorithm [39]. This achievement is most
remarkable because the NIEI algorithm is non-iterative, making it very efficient.

Figure 22 shows the required computation times for building and saving the required system
matrices, denoted the “Build Up Time”, and the computation times required to invert the matrices,
denoted the “Run Time”, corresponding to imaging problems of different sizes. For the results reported
herein the algorithm was programmed in serial in MATLAB and run on computer with a 3.4 GHz
Intel Core i5 processor having 32 GB of memory. The “Run Time” includes solving 16 (the number
of transmitters) inverse-source problems and one contrast recovery problem. For all the problems
considered herein, recovering 25 to 625 unknown eigenfunction coefficients, the “Run Time” is less
than 30 seconds. The algorithm requires more time to build and save all matrices. However, all the
matrices are independent of frequency, the particular OI being imaged and the number and location of
the transmitters. Therefore, these matrices are generated once for a specific chamber shape and size.
The NIEI algorithm is significantly faster than conventional iterative algorithms such as DGM-CSI [35]
and FEM-CSI [39].
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Figure 22. “Build Up Time” and “Run Time” for different numbers of eigenfunction basis.

7. CONCLUSION

The NIEI algorithm was introduced, which consists of two non-iterative inversion stages: (1) solving a
series of inverse-source problems and (2) combining the inverse source results into a contrast recovery
stage. The algorithm was demonstrated for the 2D Helmholtz BVP formulation of quantitative
MWI using a conductive imaging chamber. The algorithm expands the unknown functions using the
eigenfunctions for the Helmholtz BVP as a whole-domain basis. An innovative regularization approach
that constrains the contrast sources to be zero outside the imaging domain at virtual test points or
virtual contours results in well-conditioned inverse-source system matrices that are efficiently inverted
in a least-squares sense. The algorithm’s performance was assessed using several numerical studies
and the results clearly demonstrate the algorithm’s robustness and applicability to difficult inversion
problems.

The computational resources required by the algorithm are extremely low and cutting-edge in terms
of the state-of-the-art for inverse problems. The algorithm is easily extendible to 3D imaging applications
and it is expected that the computational resource savings will be even more competitive with existing
state-of-the-art 3D inversion techniques. Future research related to extending the algorithm to the case
of 3D imaging using 3D vector-field data has already begun [40]. Such a 3D eigenfunction-based non-
iterative inversion algorithm is expected to be significantly faster than previously reported 3D MWI
techniques.
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