Vol. 83
Latest Volume
All Volumes
PIERB 109 [2024] PIERB 108 [2024] PIERB 107 [2024] PIERB 106 [2024] PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2019-02-19
Accurate Calculation of the Power Transfer and Efficiency in Resonator Arrays for Inductive Power Transfer
By
Progress In Electromagnetics Research B, Vol. 83, 61-76, 2019
Abstract
This paper studies the power transfer characteristics of a resonator array for inductive power transfer by means of the accurate analytical solution of its circuit model. Through the mathematical inversion of a tridiagonal matrix, it is possible to obtain closed-form expressions for the current in each resonator and consequently expressions for the power transfer and efficiency of the system. The method can be applied to a resonator array powering a load at the end of the array or a receiver facing the array at any position. With the expressions obtained, it is possible not only to achieve a better understanding of the power transfer characteristics in resonator arrays but also to obtain the conditions for maximum power transfer or maximum efficiency, for several conditions and parameters of the system. A prototype of a stranded-wire resonator array powered by a resonant inverter, capable of delivering power to a load from 65 W to 90 W with efficiency values between 63% and 88%, was built in order not only to validate the expressions obtained but also to show their practical applicability and demonstrate that these arrays can be used for higher power transfer applications.
Citation
Jose Alberto, Ugo Reggiani, Leonardo Sandrolini, and Helena Albuquerque, "Accurate Calculation of the Power Transfer and Efficiency in Resonator Arrays for Inductive Power Transfer," Progress In Electromagnetics Research B, Vol. 83, 61-76, 2019.
doi:10.2528/PIERB18120406
References

1. Shinohara, N., "The wireless power transmission: Inductive coupling, radio wave, and resonance coupling," Wiley Interdisciplinary Rev.: Energy and Environment, Vol. 1, No. 3, 337-346, 2012.
doi:10.1002/wene.43

2. Casanova, J. J., Z. N. Low, and J. Lin, "A loosely coupled planar wireless power system for multiple receivers," IEEE Trans. on Ind. Electron., Vol. 56, No. 8, 3060-3068, Aug. 2009.
doi:10.1109/TIE.2009.2023633

3. Ahmad, A., M. S. Alam, and R. Chabaan, "A comprehensive review of wireless charging technologies for electric vehicles," IEEE Trans. Transport. Electrific., Vol. 4, No. 1, 38-63, Mar. 2018.
doi:10.1109/TTE.2017.2771619

4. Ranum, B. T., N. W. D. E. Rahayu, and A. Munir, "Development of wireless power transfer receiver for mobile device charging," The 2nd IEEE Conf. on Power Eng. and Renewable Energy (ICPERE) 2014, 48-51, Dec. 2014.
doi:10.1109/ICPERE.2014.7067237

5. Xue, R. F., K. W. Cheng, and M. Je, "High-efficiency wireless power transfer for biomedical implants by optimal resonant load transformation," IEEE Trans. Circuits Syst. I, Reg. Papers, Vol. 60, No. 4, 867-874, Apr. 2013.
doi:10.1109/TCSI.2012.2209297

6. Liu, Z., Z. Chen, Y. Guo, and Y. Yu, "A novel multi-coil magnetically-coupled resonance array for wireless power transfer system," 2016 IEEE Wireless Power Transfer Conf. (WPTC), 1-3, May 2016.

7. Zhong, W., C. K. Lee, and S. Y. R. Hui, "General analysis on the use of Tesla’s resonators in domino forms for wireless power transfer," IEEE Trans. Ind. Electron., Vol. 60, No. 1, 261-270, Jan. 2013.
doi:10.1109/TIE.2011.2171176

8. Zhang, X., S. L. Ho, and W. N. Fu, "Quantitative design and analysis of relay resonators in wireless power transfer system," IEEE Trans. Magn., Vol. 48, No. 11, 4026-4029, Nov. 2012.
doi:10.1109/TMAG.2012.2202883

9. Puccetti, G., C. J. Stevens, U. Reggiani, and L. Sandrolini, "Experimental and numerical investigation of termination impedance effects in wireless power transfer via metamaterial," Energies, Vol. 8, No. 3, 1882-1895, 2015.
doi:10.3390/en8031882

10. Monti, G., L. Corchia, L. Tarricone, and M. Mongiardo, "A network approach for wireless resonant energy links using relay resonators," IEEE Trans. Microw. Theory Techn., Vol. 64, No. 10, 3271-3279, Oct. 2016.
doi:10.1109/TMTT.2016.2601092

11. Alberto, J., U. Reggiani, and L. Sandrolini, "Circuit model of a resonator array for a WPT system by means of a continued fraction," Proc. 2016 IEEE 2nd Int. Forum on Research and Technol. for Society and Ind. Leveraging a Better Tomorrow (RTSI), 1-6, Bologna, Italy, Sept. 2016.

12. Alberto, J., G. Puccetti, G. Grandi, U. Reggiani, and L. Sandrolini, "Experimental study on the termination impedance effects of a resonator array for inductive power transfer in the hundred kHz range," Proc. 2015 IEEE Wireless Power Transfer Conf. (WPTC 2015), 1-4, Boulder, CO, USA, May 2015.

13. Alberto, J., U. Reggiani, and L. Sandrolini, "Magnetic near field from an inductive power transfer system using an array of coupled resonators," 2016 Asia-Pacific Int. Symp. on Electromagn. Compat. (APEMC), Vol. 01, 876-879, May 2016.
doi:10.1109/APEMC.2016.7522897

14. Alberto, J., U. Reggiani, L. Sandrolini, and H. Albuquerque, "Fast calculation and analysis of the equivalent impedance of a wireless power transfer system using an array of magnetically coupled resonators," Progress In Electromagnetics Research B, Vol. 80, 101-112, 2018.
doi:10.2528/PIERB18011704

15. Stevens, C. J., "Magnetoinductive waves and wireless power transfer," IEEE Trans. Power Electron., Vol. 30, No. 11, 6182-6190, Nov. 2015.
doi:10.1109/TPEL.2014.2369811

16. Zhang, Y., Z. Zhao, and K. Chen, "Frequency-splitting analysis of four-coil resonant wireless power transfer," IEEE Trans. Ind. Appl., Vol. 50, No. 4, 2436-2445, Jul. 2014.
doi:10.1109/TIA.2013.2295007

17. Solymar, L. and E. Shamonina, Waves in Metamaterials, OUP Oxford, 2009.

18. Parise, M. and G. Antonini, "On the inductive coupling between two parallel thin-wire circular loop antennas," IEEE Trans. on Electromagn. Compat., Vol. 60, No. 6, 1865-1872, Dec. 2018.
doi:10.1109/TEMC.2018.2790265

19. Fonseca, C. D. and J. Petronilho, "Explicit inverse of a tridiagonal k-toeplitz matrix," Numerische Mathematik, Vol. 100, No. 3, 457-482, 2005.
doi:10.1007/s00211-005-0596-3

20. Wang, C.-S., O. H. Stielau, and G. A. Covic, "Design considerations for a contactless electric vehicle battery charger," IEEE Trans. Ind. Electron., Vol. 52, No. 5, 1308-1314, Oct. 2005.
doi:10.1109/TIE.2005.855672

21. Alberto, J., U. Reggiani, and L. Sandrolini, "Study of the conducted emissions of an ipt system composed of an array of magnetically coupled resonators," Proc. 2017 IEEE Int. Symp. on Electromagn. Compat. Signal/Power Integrity (EMCSI), 623-628, Aug. 2017.
doi:10.1109/ISEMC.2017.8077943

22. Kazimierczuk, M. K., "Class d voltage-switching mosfet power amplifier," IEE Proceedings BElectric Power Applications, Vol. 138, No. 6, 285-296, IET, 1991.
doi:10.1049/ip-b.1991.0035

23. Kazimierczuk, M. and D. Czarkowski, Resonant Power Converters, Wiley, 2012.

24. Zhong, W. X., C. K. Lee, and S. Y. Hui, "Wireless power domino-resonator systems with noncoaxial axes and circular structures," IEEE Trans. Power Electron., Vol. 27, No. 11, 4750-4762, Nov. 2012.
doi:10.1109/TPEL.2011.2174655