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Accurate Calculation of the Power Transfer and Efficiency
in Resonator Arrays for Inductive Power Transfer

José Alberto1, *, Ugo Reggiani2, Leonardo Sandrolini2, and Helena Albuquerque3

Abstract—This paper studies the power transfer characteristics of a resonator array for inductive power
transfer by means of the accurate analytical solution of its circuit model. Through the mathematical
inversion of a tridiagonal matrix, it is possible to obtain closed-form expressions for the current in each
resonator and consequently expressions for the power transfer and efficiency of the system. The method
can be applied to a resonator array powering a load at the end of the array or a receiver facing the array
at any position. With the expressions obtained, it is possible not only to achieve a better understanding
of the power transfer characteristics in resonator arrays but also to obtain the conditions for maximum
power transfer or maximum efficiency, for several conditions and parameters of the system. A prototype
of a stranded-wire resonator array powered by a resonant inverter, capable of delivering power to a load
from 65 W to 90 W with efficiency values between 63% and 88%, was built in order not only to validate
the expressions obtained but also to show their practical applicability and demonstrate that these arrays
can be used for higher power transfer applications.

1. INTRODUCTION

Inductive power transfer (IPT) systems allow one to avoid electrical contact and transmit power even
in environments with harsh conditions (water, dust or dirt) [1, 2]. In this way, they can be used in a
wide number of applications (electrical vehicle charging [3], mobile devices charging [4] and powering
biomedical devices [5]). In order to overcome the loss of efficiency in cases where the emitter and receiver
coils are distant, arrays of resonators can be used to transfer power over longer distances [6–10]. In these
arrays the first resonator is usually connected to a power source and transmits power through magnetic
coupling to the other resonators of the array, which are arranged in a plane with parallel axes [9, 11–15],
or alternatively, in domino configurations [7, 8, 10].

These arrays have been studied in literature using magnetoinductive wave theory [9, 15], with a
representation of the array as a cascade of identical two-ports [10], or using circuit analysis [7, 8, 11].
Regarding the circuit model of a resonator array, it is also known in literature that the array can be
represented by an impedance matrix which contains the impedance of each resonator and the mutual
inductances between pairs of resonators as in [7–9, 12, 16, 17]. Using the inverse of this impedance
matrix, it is possible to obtain the current in each resonator, which can be used to determine the
power delivered to a load at the end of the array or to a receiver placed over any array resonator and
consequently determine the efficiency of the system. In literature the inverse of this matrix is usually
solved numerically, using specific values of circuit parameters. However, no analytical solution of this
impedance matrix can be found in literature. Moreover, regarding the prototypes that use resonator
arrays presented in literature, these usually use RF amplifiers as power source and deliver up to a few
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watts of power [7–9, 15]. These arrays can be used to extend the charging range of domestic electronic
devices, as mobile phones or laptops, to allow the charge of more devices at the same time and, if the
prototypes are further improved, could be used for electrical vehicle inductive road-charging.

In this paper, using the mathematical inversion of a generic tridiagonal matrix, closed-form
expressions for the currents, power transferred and efficiency are obtained for different types of arrays
of resonators. With these expressions, it is possible not only to have a better insight of the behaviour of
the system, but also to obtain the conditions that guarantee maximum power transfer and/or maximum
efficiency. After the description of the circuit in Section 2, the development of the expressions and some
numerical examples are given in Section 3 in order to illustrate the analytical results obtained. Finally,
in Section 4, with an experimental setup using a resonant inverter to feed an array with stranded wire
resonators, capable of delivering up to 90 W to a load, the expressions obtained in this work are validated
thus showing a practical applicability of the formulas presented.

2. DESCRIPTION OF THE CIRCUIT: CASES OF STUDY

In this section, we describe the circuit studied and present the relevant cases in order to analyse the
power transmission using a resonator array. Considering an array with N identical resonators in which
the first behaves as the emitter coil and is connected to an ideal sinusoidal voltage source V̂s and the
last one (Nth) to a termination impedance Ẑ ′

T , its equivalent circuit can be represented as shown in
Fig. 1. Each resonator has an impedance Ẑ = R + jωL + 1/(jωC), being L the inductance of the
resonator, R its intrinsic resistance and C the added capacitance. At the resonant angular frequency
ω0 = 2πf0 = 1/

√
LC, the impedance of each resonator becomes equal to its resistance (Ẑ = R).

For simplicity of the circuit analysis, only the main resonant angular frequency ω0 is considered and
the frequency splitting phenomenon [16] is not considered. The mutual inductance between adjacent
resonators is given by M whereas the one between non adjacent resonators is neglected, as its value is
much smaller compared to M in arrays arranged in a plane with parallel axes [9, 15]. It can be calculated
analytically following the procedure described in [18]. Then, the equivalent circuit can be written in
matrix form as:

V̂ = ẐmÎ (1)

with
V̂ = [V̂s, 0, . . . , 0]T (2)

being the current vector represented by

Î = [Î1, . . . , ÎN ]T (3)

and the matrix Ẑm is a tridiagonal matrix:

Ẑm =

⎡
⎢⎢⎢⎣

Ẑ jωM . . . 0
jωM Ẑ . . . 0

...
...

. . . jωM

0 0 jωM Ẑ + Ẑ ′
T

⎤
⎥⎥⎥⎦ . (4)

As Eq. (4) shows, the elements of the sub-diagonals of the impedance matrix are identical and
equal to jωM . Moreover, all elements of the impedance matrix main diagonal are identical and equal

Figure 1. Equivalent circuit of an array of N resonators.



Progress In Electromagnetics Research B, Vol. 83, 2019 63

(a)

(b)

(c)

Figure 2. Circuit representations of a possible configuration of the considered resonator array: (a)
receiver over the lth cell, (b) receiver represented by an impedance Ẑd and (c) its equivalent circuit
(Ẑ ′

T = Ẑd + Ẑeq,N−l).

to Ẑ except for the last one which is represented by Ẑ + Ẑ ′
T , as in Fig. 1. In case the array is simply

terminated in a load ẐT , Ẑ ′
T = ẐT represents the load. If a receiver is over the lth cell (with N > l) of

the array, as shown in Fig. 2(a), it can be represented by an impedance Ẑd (see Fig. 2(b)), which is the
impedance of the receiver seen from the lth cell [9, 15], and all the resonators after the lth one (N − l

resonators) can be represented with an equivalent impedance Ẑeq,N−l (see Fig. 2(c)), as in [14]. Thus,
Ẑ ′

T = Ẑd + Ẑeq,N−l and the the matrix in Eq. (4) becomes an l × l matrix. In the particular case where
the receiver is over the last cell (Nth), i.e., l = N , the equivalent impedance becomes Ẑeq,N−l = ẐT .

In order to calculate the value of the current vector in Eq. (3), i.e., the currents flowing in the
resonators, as Î = Ẑ−1

m V̂ we need to determine the inverse matrix Ẑ−1
m . Considering Eq. (2), where

only the first element is different than zero, we can obtain the values of the currents by knowing the
first column of Ẑ−1

m only (Ẑ−1
m(1,1), . . . , Ẑ

−1
m(N,1)). By determining the current in each resonator one can

determine also the power transmitted to a given load or receiver and the efficiency of the system, as it
will be shown in Section 3.

3. DETERMINATION OF THE CURRENT IN EACH RESONATOR, POWER AND
EFFICIENCY

In this section, the analytical expressions of the current in each resonator, the power delivered to a
load or a receiver, and the efficiency of the system and their maximum values are presented. In the
examples the values L = 12.6µH, C = 93.1 nF, R = 0.11Ω, M = −1.55µH (determined through
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measurements made on the experimental setup described in Section 4) are used. Note that for the
considered array layout, the mutual inductance between each pair of adjacent resonators is considered
negative as in [9, 15]. The resonant frequency is f0 = 147 kHz.

3.1. Currents in the Resonators

According to the mathematical determination of the inverse of a tridiagonal matrix described in [19], we
can then obtain the first column of Ẑ−1

m , that allows the expression of the current in the qth resonator
to be found as:

Îq = V̂s

(−2jωM)q−1
((

ι3 + 2Ẑ ′
T

)
ιN−q
3 −

(
ι2 + 2Ẑ ′

T

)
ιN−q
2

)
(
Ẑ + Ẑ ′

T

) (
ιN3 − ιN2

)
+ 2 (ωM) 2

(
ιN−1
3 − ιN−1

2

) (5)

where ι2 = Ẑ −
√

4(ωM)2 + Ẑ2 and ι3 = Ẑ +
√

4(ωM)2 + Ẑ2.
Equation (5) can be used to examine the distribution of currents in the resonators of an array

terminated in a load. For example, with reference to Fig. 1, an array of 8 identical resonators is
considered; for a given voltage source V̂s = 1 V, the current magnitudes in the resonators at the resonant
frequency f0 for three different termination impedances are shown in Fig. 3. It can be noticed that
when the array is perfectly terminated (R′

T = Req,∞), the current magnitude decreases smoothly from
the first to the last resonator. The perfectly matching impedance is the termination impedance that
makes the equivalent impedance of the array constant and equal to R′

T regardless of the number of
resonators; its value is Req,∞ = (−R +

√
4(ω0M)2 + R2)/2 [11] and for the array considered in the

example Req,∞ = 1.38Ω. If the array is terminated with a different impedance, the current magnitude
oscillates from the first to the last resonator and the peaks occur on even or odd resonators, depending
whether R′

T < Req,∞ or R′
T > Req,∞, respectively.

Figure 3. Magnitude of the current Îq in the qth resonator of an array of 8 resonators, for different
values of R′

T (0.4 Ω, Req,∞ = 1.38Ω and 10 Ω).

When the array is perfectly terminated we have

Îq+1

Îq

=
−2jω0M

R +
√

4(ω0M)2 + R2
(6)

whose value is 0.9562j in this example (see Fig. 3). The ratio of the currents in two consecutive resonators
thus depends on the electrical parameters of the array and the frequency only; it is independent on the
termination impedance Req,∞. For a low-loss line, i.e., R � ω0M , Eq. (6) becomes equal to j, meaning
that all the currents have the same magnitude and have a phase difference of π/2.

3.2. Efficiency and Power Delivered to a Load or a Receiver over the Last Cell

At the resonant frequency the efficiency (ratio of the power absorbed by RT to the array input power)
is:

η =
PRT

Pin
=

IN
2RT

VsI1
(7)
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in which I1, IN and Vs are the RMS values of the currents in the first and Nth resonator and of the
voltage source, respectively. Using Eq. (5) the power PRT

delivered to a load RT and the efficiency η
in Eq. (7) can be written as functions of the electrical parameters of the array and the load RT :

PRT
=

4NV 2
s RT (ω0M) 2N−2ι21[

(R + RT )
(
ιN3 − ιN2

)
+ 2 (ω0M) 2

(
ιN−1
3 − ιN−1

2

)]2 , (8)

η =
4N+1RT (ω0M) 2N ι21[(

ιN2 (ι3RT − 2 (ω0M) 2) + ιN3 (2 (ω0M) 2 − ι2RT )
) (

ι1
(
ιN2 + ιN3

) − (R + 2RT )
(
ιN2 − ιN3

))] (9)

where ι1 =
√

4(ωM)2 + Ẑ2, ι2 and ι3 are written for f = f0.
It is interesting to notice that PRT

depends on Vs, too, which is the given RMS value of the voltage
source that feeds the array. Thus, in the following we consider the load power for the voltage Vs = 1 V
indicating it, for simplicity, with the same symbol PRT

.
Using Eqs. (8) and (9), the values of RT that yield the maximum efficiency and maximum power

transfer can be determined analytically by solving
dη

dRT
= 0,

dPRT

dRT
= 0

for RT , thus obtaining

RT,ηmax =
ω0 |M |

√
R

(
ιN3 − ιN2

)
+ ι1

(
ιN2 + ιN3

)
√

R
(
ιN2 − ιN3

)
+ ι1

(
ιN2 + ιN3

) (10)

and

RT,PRT max
=

RιN2 − ι1ι
N
2 − RιN3 − ι1ι

N
3

2ιN2 − 2ιN3
, (11)

respectively. These termination impedances RT,ηmax and RT,PRT max
depend on the number of resonators

N of the array, as shown in Figs. 4(a) and 4(b), where PRT
and η are plotted versus RT for different

N , respectively. As regards PRT
(for Vs = 1 V), higher or lower values of the power delivered to a load

are obtained depending on whether the array has an odd or an even number of cells. In the example
considered, for RT greater than about 2Ω higher values of PRT

are obtained for arrays with an even
number of cells (N = 2, 4, 6 and 8); conversely, when RT is smaller than about 1 Ω, higher PRT

values
are obtained for arrays with an odd number of cells (N = 1, 3, 5 and 7). Differently, Fig. 4(b) shows
that for a given RT the efficiency decreases with increasing N .

Further, by means of Eqs. (10) and (11), the following considerations can be made. The dependency
of RT,ηmax and RT,PRT

max on N is clearly shown in Figs. 5(a) and 5(b); it can be noticed that both
Eqs. (10) and (11) tend to the same constant value for increasing N , the latter with larger oscillations.
This can be proved considering an ideal array with an infinite number of resonators, which can be
approximated by a very long resonator line; from Eq. (10) we get

lim
N→∞

RT,ηmax = lim
N→∞

RT,PRT
max =

R +
√

4 (ω0M) 2 + R2

2
(12)

whose value is 1.44Ω in both Figs. 5(a) and 5(b).
Moreover, it is interesting to note that the value given by Eq. (12) tends to ω0M for a low-loss

line (R � ω0M), which is the perfectly matching impedance of a long low-loss line according to the
magnetoinductive wave theory [9, 15].

By substituting Eq. (10) in Eq. (9) and Eq. (11) in Eq. (8), the maximum efficiency of the system
η and maximum power delivered to RT for an array of N resonators with certain electrical parameters
can be obtained. In order to facilitate this analysis, we can define a parameter r

r = R/(2ω0|M |). (13)

The higher r is, the higher the losses of the resonator array are, and so r tends to zero for a low-loss
line. This ratio r is simply 1/|kQ| that, according to the magnetoinductive wave theory, increases the
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Figure 4. Values of (a) the power absorbed by RT and (b) the efficiency (%) versus RT for different
numbers of resonators N .

(a) (b)

Figure 5. Values of (a) RT , ηmax versus the number of resonators N and (b) RT , PRT
max versus the

number of resonators N .

attenuation in each cell [9, 15]. Then, for different values of r, we can plot the maximum power delivered
to a load PRT ,max and the maximum efficiency ηmax for an array with N resonators (Figs. 6(a) and 6(b),
respectively).

As expected, both ηmax and PRT ,max decrease with increasing r (i.e., with the decrease of |kQ|) due
to higher losses and attenuation in the array) and the number of resonators N .

3.3. Efficiency and Power Transmitted to a Receiver Rd over the lth Cell

At the resonant frequency the efficiency (ratio of the power absorbed by Rd to the input power) is:

ηRd
=

PRd

Pin
=

Il
2Rd

VsI1
(14)

where I1, Il, and Vs are the RMS values of the currents in the first and lth resonators and of the voltage
source. Using Eq. (5), replacing N with l and Ẑ ′

T with Rd + Req,N−l in Eqs. (8) and (9), we can write
the power delivered to a receiver over the lth position and the efficiency as Eqs. (15) and (16).

PRd
=

4lV 2
s Rd(ω0M)2l−2ι21[

(R + Rd + Req,N−l)
(
ιl3 − ιl2

)
+ 2 (ω0M)2

(
ιl−1
3 − ιl−1

2

)]2 (15)
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Figure 6. Values of (a) the maximum power delivered to RT and (b) the maximum efficiency versus r
for different numbers of resonators N .

ηRd
=

4l+1Rd(ω0M)2lι21[ (
ι1

(
ιl2 + ιl3

)
+

(
ιl3 − ιl2

)
(R + 2 (Rd + Req,N−l))

)
(
(Rd + Req,N−l)

(
ι1

(
ιl2 + ιl3

)
+ R

(
ιl2 − ιl3

)) − 2 (ω0M) 2
(
ιl2 − ιl3

))
] (16)

Note that, for the particular situation where there is a receiver over the Nth cell and the line is
terminated by RT , we can determine the power delivered to Rd and efficiency of the system by replacing
l with N and Req,N−l with RT in Eqs. (15) and (16), respectively.

With Eqs. (15) and (16) the power delivered to a receiver Rd (for Vs = 1 V) and the efficiency of
the system can be plotted versus Rd and Req,N−l and for the different positions of the receiver over the
array, as shown in Figs. 7(a) and 7(b), respectively.

PRd(Req,N−l=Req,∞)
=

4lV 2
s Rd(ω0M)2l−2ι21[

Rd

(
ιl3 − ιl2

)
+ ι1ιl3

]2 (17)

ηRd(Req,N−l=Req,∞)
=

22l+1Rd (ω0M) 2l
(
4(ω0M)2 + R2

)
[ (

ι1ι
l
3 + Rd

(
ιl3 − ιl2

)) (−R
(
ι1ι

l
3 − Rdι

l
2 + Rdι

l
3

))
+

+ ι1Rd

(
ιl2 + ιl3

)
+ 4 (ω0M) 2ιl3 + R2ιl3

] (18)

From Fig. 7(a) it can be observed that, similar to what observed in Fig. 4(a), PRd
presents

different behaviours for odd and even values of l (i.e., the receiver position). For example, considering
Rd = Req = 5Ω, PRd

has the highest values when the receiver is on even positions (l = 2, 4, 6 and 8)
and lowest values for odd positions (l = 1, 3, 5 and 7), for the same value of Req,N−l. Moreover, as
can be noticed in both Figs. 7(a) and 7(b), both the power delivered to a receiver and the efficiency
increase for decreasing values of Req,N−l. However, as shown in [11], Req,N−l has an oscillating value,
depending on the number of resonators after the receiver, the termination impedance of the array and
the electrical parameters of the system. In order to make Req,N−l constant the array must be perfectly
terminated with RT = Req,∞, so that the equivalent impedance Req,N−l of all the resonators after the
lth one is always equal to Req,∞ regardless of the number of resonators N and for any position of the
receiver l (with N ≥ l). By replacing Req,N−l with Req,∞ in Eqs. (15) and (16) we get Eqs. (17) and
(18) that can be plotted versus Rd and for different positions of the receiver l (see Figs. 8(a) and 8(b),
respectively).

As seen also in the previous case, the power delivered to a receiver has higher or lower values
depending on the parity of the position of the receiver, while the efficiency decreases as the distance of
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(a)

(b)

Figure 7. Values of (a) the power delivered to Rd, PRd
(W ), determined with Eq. (15) and (b) the

efficiency (%) determined with Eq. (16) versus Req,N−l and Rd and for different positions of the receiver
l.

the receiver from the power source increases. Moreover, it is interesting to note that for any position of
the receiver, the variation of the power delivered to it and the efficiency versus Rd is less than that in
Figs. 4(a) and 4(b).

The values of Rd that guarantee the maximum efficiency, Rd,ηRd max
, and maximum power delivered

to Rd, Rd,PRd
max, can be found by solving

dηRd
(Req,N−l = Req,∞)

dRd
= 0;

dPRd
(Req,N−l = Req,∞)

dRd
= 0 (19)

for Rd, thus obtaining

Rd,ηRd max(Req,N−l=Req,∞)
=

√
ι21(−ι2)ι2l

3√(
ιl3 − ιl2

) (
R

(
ιl2 − ιl3

)
+ ι1

(
ιl2 + ιl3

)) (20)

and

Rd,PRd max(Req,N−l=Req,∞)
= − ι1ι

l
3

ιl2 − ιl3
. (21)

Equations (20) and (21) are plotted versus the position of the receiver in Figs. 9(a) and 9(b), respectively.
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Figure 8. Values of (a) the power delivered to Rd and (b) the efficiency (%), versus Rd for different
positions of the receiver l for an array terminated with Req,∞.
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Figure 9. Value of (a) Rd,ηRd max(Req,N−l=Req,∞)
versus the position of the receiver and (b)

Rd,PRd
max(Req,N−l=Req,∞) versus the position of the receiver.

It can be noticed that for an increasing number of resonators both Rd,ηmax and Rd,PRd
max tend to

a constant value; in fact,

lim
l→∞

Rd,PRd max(Req,N−l=Req,∞)
=

√
4(ω0M)2 + R2 = lim

l→∞
Rd,ηRd max(Req,N−l=Req,∞)

(22)

which for a very low loss line (R � ω0M) tends to 2ω0M . In the plots of Figs. 9(a) and 9(b), Eq. (22)
is equal to 2.87 Ω; Rd,ηmax converges to this value quicker than Rd,PRd

max and with smaller oscillations.
By substituting Eqs. (20) and (21) in Eqs. (18) and (17), respectively, the maximum efficiency and

power delivered to the receiver can be obtained; they are plotted versus r and for different positions of
the receiver over an array terminated with Req,∞ (see Figs. 10(a) and 10(b), respectively).

Figure 10(a) shows that the maximum power delivered to a receiver decreases with the increase of
r (meaning higher losses in the array); for the same value of r, higher values are found for even receiver
positions (l = 2, 4, 6 and 8) rather than for odd positions (l = 1, 3, 5 and 7). Similarly, as Fig. 10(b)
shows, the maximum efficiency decreases with the increase of r and when the receiver gets far away
from the power source. It can also be noted that the maximum power and maximum efficiency shown
in Figs. 10(a) and 10(b) are lower than the ones in Figs. 6(a) and 6(b), since now we are considering
that the resonator array has other cells after the cell under the receiver, which leads to extra losses.

All the previous considerations on the power delivered to Rd, PRd
, were made considering a voltage

source with a constant RMS value Vs. If the RMS value Vs is variable, Eq. (17) can be used to determine
the value of Vs needed to keep PRd

constant regardless of the position l of the receiver, as shown in
Fig. 11.
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Figure 10. Values of (a) the maximum power delivered to a receiver Rd and (b) maximum efficiency
versus r for different positions of the receiver l.

Figure 11. RMS value of the voltage source Vs for a fixed power PRd
versus Rd and for different

positions of the receiver l (the array is terminated with Req,∞)

3.4. Power Transmitted Considering the Losses in the Receiver

In the previous section, the analysis of the power delivered to a receiver and the IPT system efficiency
has been made simpler representing the receiver with an impedance Ẑd that takes into account also the
receiver losses (due to its intrinsic AC resistance Rr) and a load Rload connected to it (see Figs. 2(a)
and (b)). The power delivered to Rload is then given by:

PRload
= I2

r Rload (23)

where Ir is the RMS value of the current of the receiver, which can be written in terms of the RMS
value of the current Il in the lth resonator of the array according to the circuit represented in Fig. 2(a).
Assuming that the resonant frequency of the receiver is the same than that of the cells of the array, as
seen in [9, 20], Ir is given by:

Ir =
ω0Mr,lIl

Rr + Rload
. (24)

Mr;l being the mutual inductance between the receiver and the cell beneath it (lth cell), as Fig. 2(a)
shows. The power absorbed by Rd is PRd

= I2
l Rd, where Rd can be calculated as [9]:

Rd =
(ω0Mr,l)

2

Rr + Rload
. (25)
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Using Eqs. (23) and (24) we can write
PRload

PRd

=
Rload

Rr + Rload
. (26)

According to Eq. (26), the power delivered to the load can be maximized by having Rload much larger
than Rr. For Eq. (25) this could imply a lower value of Rd if Mr,l is not high enough. Then, for a
given value of Rd, in order to suppress the effect of Rr, both Mr,l and Rload should be made as large as
possible. Under this condition the power and efficiency can thus be calculated with Eqs. (15), (16), (17)
and (18), as PRload

/PRd
� 1. Otherwise, the power delivered to Rload can be obtained by multiplying

Eq. (26) by PRd
.

4. EXPERIMENTAL VERIFICATION

4.1. Experimental Setup

The theoretical analysis presented in the previous section was verified experimentally using the resonator
array built in laboratory used in [14, 21]. The circuital parameters of each resonator (self-inductance,
intrinsic AC resistance and added capacitance) and its resonant frequency were measured using an
Agilent 4396B 100 kHz–1.8 GHz Vector Network Analyser (VNA) and were reported in [14, 21].

As in [14, 21], the power supply used in the experimental setup consisted of a full-bridge inverter
(a Fairchild Semiconductor FSB44104A) supplied by a AIM-TTI Instruments QPX1200SP 1200W DC
Power Supply controlled by an Arduino Due microprocessor. The input current was measured with a
500 MHz Agilent Infiniium 54825A digital oscilloscope and a Tektronix TCP305 DC to 50 MHz current
probe. The voltages were measured using a TESTEC TT-SI 9002 voltage differential probe connected
to the same oscilloscope.

The RMS value of the voltage source Vs used for calculations was experimentally determined as
in [14, 22]:

Vs = Vs1 =
4

π
√

2
Vsq (27)

where Vs1 is the RMS of the fundamental component of the inverter output square-wave vin, and Vsq is
the measured amplitude value of the square wave, whose duty cycle is assumed to be 0.5. Even if the
voltage source has a waveform different from the sinusoidal one (square wave in the case considered),
the purely sinusoidal approach, used for the circuit of Fig. 1, is still valid when the system is in the
resonance condition. In fact, as reported in [22] and explained in [23], a resonant circuit acts as a filter
for the frequencies different than the one of resonance. As a result, the current and voltage resulting
waves in the circuit are sinusoidal.

4.2. Power and Efficiency

The measured values for the power transmitted and efficiency were obtained by measuring the input
power (Pin,exp) and the power delivered to a load connected to the last cell (PRT ,exp) or a receiver
(PRload,exp). The input power was determined by calculating the average value over a period of
the product of the instantaneous voltage vin(t) and current iin(t) measured at the terminals of the
inverter. Pin,exp and its average value in a period were calculated with the mathematical functions of
the oscilloscope, as in [12]. The power delivered to a given load was calculated as the ratio of the square
RMS value of the voltage measured at the load terminals (VT or Vload) to the load (RT or Rload):

PRT ,exp = V 2
T /RT ; PRload,exp = V 2

load/Rload. (28)

We can then calculate the experimental value of the system efficiency as

ηRT ,exp = PRT ,exp/Pin,exp; ηRload,exp = PRload,exp/Pin. (29)

An example of the waveforms of vin(t), iin(t) and the voltage at the terminals of the termination
resistance vT (t) is shown in Fig. 12. The voltage vT (t) leads the input voltage vin(t) by 90 degrees. This
happens because the current in the 6th resonator leads the first resonator current by 90 degrees, as seen
in Subsection 3.1.
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Figure 12. Example of the waveforms of vin(t), iin(t) and of vT (t) for RT = 1.5Ω, vT (t) measured
with the oscilloscope. Horizontal scale: 2 µs/div. Vertical scale 10 V/div and 5 A/div.

4.2.1. Power Delivered to a Load or a Receiver over the Last Cell and Efficiency

The power delivered to a load or a receiver over the last cell and the efficiency of the system were
respectively calculated with Eqs. (8) and (9) and compared to those obtained from measurements with
Eqs. (28) and (29). They are plotted versus RT in Fig. 13 (for Vs = 4.9 V and an array with 6
resonators) and versus the number of resonators N in Fig. 14 (for Vs = 12.1 V and an array terminated
with RT = 1.5Ω).

Figure 13. Comparison between the values of PRT
and ηRT

obtained with measurements (using
Eqs. (28) and (29)) and the developed formulas (8) and (9) versus RT for a 6-resonator array.

Figure 14. Comparison between the values of PRT
and ηRT

obtained with measurements (using
Eqs. (28) and (29)) and the developed formulas (8) and (9) versus the number of resonators for a
termination resistance RT = 1.5Ω.

For the considered array configuration, the values of RT that yield the maximum efficiency and
maximum power transfer are found as RT,ηmax = 1.44Ω and RT,PRT ,max

= 6.4Ω using Eqs. (10) and
(11), respectively.

It can be noticed from Fig. 13 that the highest value of the efficiency ηRT
is obtained when the

value RT is closest to the value of RT,ηmax ; the same is found for the power delivered to a load PRT
: the

maximum power transfer occurs when the value of RT is closest to RT,PRT ,max
. Thus, depending on the

type of application for which the array is designed (maximum efficiency or maximum power transfer),
there exist different optimal values of RT .
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Moreover, we can notice from Fig. 14 that for a given value of RT = 1.5Ω both ηRT
and PRT

decrease with the number of resonators N , the former almost linearly. The efficiency is between 63%
and 88% and the delivered power between 65 W and 90 W; these power levels are higher than what
usually reported in literature for IPT systems with resonator arrays [7, 15, 24].

4.2.2. Power Delivered to a Receiver over the lth Cell and Efficiency

Figure 15 shows the experimental setup used to measure the power delivered to a receiver over the
array and the efficiency of the IPT system. For simplicity, the receiver is identical to the stranded-wire
resonators (thus Rr = R in Eqs. (25) and (26)) and a load Rload = 5Ω is connected to it.

Figure 15. Experimental setup used to measure the power delivered to a receiver over the array and
the efficiency of the IPT system.

The array is fed with Vs = 4.9 V and terminated with RT = 1.5Ω; the measured mutual inductance
between each array cell and the receiver (for a distance of 1 cm) is Mr,l = 4.8µH, which yields
Rd = 3.8Ω from Eq. (25). Being the termination impedance close to that perfectly terminating the
array (Req,∞ = 1.38Ω), the power delivered to the load and the efficiency obtained with measurements
using Eqs. (28) and (29) are compared to those calculated with Eqs. (17) and (18) multiplied by the
term on the right of Eq. (26) (equal to 0.98 in this example):

PRload
=

PRd
Rload

Rr + Rload
; ηRload

=
ηRd

Rload

Rr + Rload
. (30)

The results of the comparison are shown in Fig. 16 and show a good agreement, thus validating all the
formulas developed in Section 3. As it was observed in Figs. 8(a) and 8(b), the delivered power depends
on the position of the receiver and the values are higher for even positions, while the efficiency decreases
as the receiver moves far away from the power source.

Eventually, we can study the relation between the distance of the receiver from the array and the
power transfer and efficiency for different receiver positions. Besides the distance of 1 cm from the array,

Figure 16. Comparison between the values of PRload
and ηRload

obtained with measurements (using
Eq. (28) and (29)) and the developed formulas ((17), (18) and (26)) versus the receiver position for
a 6-resonator array terminated with RT = 1.5Ω and a receiver connected to a load Rload = 5Ω and
distant 1 cm from the array.
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(a) (b)

Figure 17. (a) Power delivered to Rload = 3.3Ω determined with Eq. (28) and (b) efficiency of the
system determined with Eq. (29) versus the position of the receiver and for three different distances
between the receiver and the array.

distances of 4 cm and 9 cm were considered, which correspond to mutual inductance values between the
receiver and the cell below it of Mr,l = 2.7µH and Mr,l = 1.2µH, respectively. Considering a load
Rload = 3.33Ω connected to the receiver, Eq. (25) yields values of Rd of 5.7Ω, 1.8Ω and 0.4Ω for
distances of 1, 4 and 9 cm, respectively. The power delivered to Rload and efficiency determined with
Eqs. (28) and (29) are shown in Fig. 17 versus the receiver position for the three different distances
between the receiver and the array, considering a voltage source with a constant RMS value. It can
be noticed from Fig. 17 that the efficiency decreases for increasing distances of the receiver from the
power source, while the power transmitted to the load oscillates. Moreover, the power delivered to Rload

decreases as the distance from the receiver to the cell of the array under it increases, when it is in an
even position (2, 4 and 6). However, when the receiver is on an even position (1, 3 and 5) the increase
in the distance from the receiver to the cell under it does not change the power transmitted to the
load significantly. Moreover, the variation of PRload

as the receiver moves away from the power source
decreases, and PRload

becomes approximately constant regardless of the position of the receiver when
the distance is 9 cm.

5. CONCLUSIONS

In this paper, by determining the inverse of the impedance matrix, which has the form of a tridiagonal
matrix, the analytical expression of the current in each resonator can be obtained and thus both the
power delivered to a load terminating the array or to a receiver over the array and the efficiency of the
IPT system can be determined.

Using these expressions, the values of the delivered power and efficiency for different conditions
and parameters of the system are obtained for various configurations of the IPT system, thus allowing
a better understanding of the behaviour of an IPT system which uses a resonator array. Moreover,
using the developed expressions one can determine analytically the maximum possible values of power
transferred and efficiency for given conditions of the IPT system and also which conditions and system
parameters lead to maximum power transfer and efficiency.

It is found that the values of the currents in the array resonators oscillate from the first to the last
resonator when the array is not perfectly terminated and that the peaks occur on even or odd resonators
depending on the termination impedance value. Moreover, the values of the maximum power transfer
and maximum efficiency depend on the electrical parameters of the array, value of the impedance of
the termination load or the receiver, position of the receiver, number of resonators, etc. It is found
that the transferred power has opposite behaviour for odd or even numbers of resonators N or for the
difference between the number of resonators and position of the receiver, N − l. It is shown that there
exist different optimal values of the termination impedance yielding maximum efficiency or maximum
power transfer; thus, depending on the application desired, the expressions can be used to optimize the
IPT system regarding maximum power transfer, maximum efficiency or constant power delivered.

The expressions and formulas developed were validated by measurements on an IPT system
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composed of an array of stranded wire resonators fed by a power inverter, thus showing their practical
applicability for the design of IPT systems with resonator arrays. The behaviour of the system can be
easily predicted for given electrical parameters of the system and different positions of the receiver thus
saving time in comparison to numerical calculations or simulations. Finally, the utilization of a system
capable of delivering up to 90 W of power shows that these arrays can also be used for applications that
require a higher amount of power (e.g., charging or powering small home devices).
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