Vol. 83
Latest Volume
All Volumes
PIERB 109 [2024] PIERB 108 [2024] PIERB 107 [2024] PIERB 106 [2024] PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2019-03-01
Land Cover Classification for Polarimetric SAR Image Using Convolutional Neural Network and Superpixel
By
Progress In Electromagnetics Research B, Vol. 83, 111-128, 2019
Abstract
The classification algorithms of polarimetric synthetic aperture radar (PolSAR) imagesare generally composed of the feature extractors that transform the raw data into discriminative representations, followed by trainable classifiers. Traditional approaches always suffer from the hand-designed features and misclassification of boundary pixels. Following the great success of convolutional neural network (CNN), a novel data-driven classification framework based on the fusion of CNN and superpixel algorithm is presented in this paper. First, the region-based complex-valued network utilizes both the intensity and phase information to predict the label of each pixel and constructs the label map based on spatial relations. Second, superpixel generating algorithm is adopted to produce the superpixel representation of the Pauli decomposition image, and the contour information which reflects the boundary of each category is preserved. Finally, the original label map and contour information are fused to make the decision of each pixel, outputting the final label map. Experimental results on public datasets illustrate that the proposed method can automatically learn the intrinsic features from the PolSAR image for classification purpose. Besides, the fusion of the superpixel features can effectively correct the misclassification of the boundary and singular pixels, thus achieving superior performance.
Citation
Yilu Ma, Yuehua Li, and Li Zhu, "Land Cover Classification for Polarimetric SAR Image Using Convolutional Neural Network and Superpixel," Progress In Electromagnetics Research B, Vol. 83, 111-128, 2019.
doi:10.2528/PIERB18112104
References

1. Jiao, L. and F. Liu, "Wishart deep stacking network for fast PolSAR image classification," IEEE Transactions on Image Processing, Vol. 25, 3273-3286, 2016.
doi:10.1109/TIP.2016.2567069

2. Scheuchl, B., D. Flett, R. Caves, and I. Cumming, "Potential of RADARSAT-2 data for operational sea ice monitoring," Canadian Journal of Remote Sensing, Vol. 30, No. 3, 448-461, 2004.
doi:10.5589/m04-011

3. Wang, L., K. A. Scott, L. Xu, et al. "Sea ice concentration estimation during melt from dualpol SAR scenes using deep convolutional neural networks: A case study," IEEE Transactions on Geoscience & Remote Sensing, Vol. 54, No. 8, 4524-4533, 2016.
doi:10.1109/TGRS.2016.2543660

4. Freeman, A., J. Villasenor, J. D. Klein, et al. "On the use of multi-frequency and polarimetric radar backscatter features for classification of agricultural crops," International Journal of Remote Sensing, Vol. 15, No. 9, 14, 1994.

5. Lee, J. S. and M. R. Grunes, "Classification of multi-look polarimetric SAR data based on complex Wishart distribution," National Telesystems Conference, IEEE, 1992.

6. Gao, W., J. Yang, and W. Ma, "Land cover classification for polarimetric SAR images based on mixture models," Remote Sensing, Vol. 6, No. 5, 3770-3790, 2014.
doi:10.3390/rs6053770

7. Rignot, E. and R. Chellappa, "Segmentation of polarimetric synthetic aperture radar data," IEEE Transactions on Image Processing, Vol. 1, No. 3, 281-300, 1992.
doi:10.1109/83.148603

8. Lee, J. S., D. L. Schuler, R. H. Lang, et al. "K-distribution for multi-look processed polarimetric SAR imagery," International Geoscience & Remote Sensing Symposium, IEEE, 1994.

9. Freitas, C. C., A. C. Frery, and A. H. Correia, "The polarimetric distribution for sar data analysis," Environmetrics, Vol. 16, No. 1, 13-31, 2010.
doi:10.1002/env.658

10. Chen, Q., G. Kuang, J. Li, et al. "Unsupervised land cover/land use classification using PolSAR imagery based on scattering similarity," IEEE Transactions on Geoscience & Remote Sensing, Vol. 51, No. 3, 1817-1825, 2013.
doi:10.1109/TGRS.2012.2205389

11. Wang, Y., C. Han, and F. Tupin, "PolSAR data segmentation by combining tensor space cluster analysis and Markovian framework," IEEE Geoscience & Remote Sensing Letters, Vol. 7, No. 1, 210-214, 2010.
doi:10.1109/LGRS.2009.2031660

12. Shang, F. and A. Hirose, "Quaternion neural-network-based PolSAR land classification in Poincaresphere-parameter space," IEEE Transactions on Geoscience & Remote Sensing, Vol. 52, No. 9, 5693-5703, 2014.
doi:10.1109/TGRS.2013.2291940

13. Yu, P., A. K. Qin, and D. A. Clausi, "Unsupervised polarimetric SAR image segmentation and classification using region growing with edge penalty," IEEE Transactions on Geoscience & Remote Sensing, Vol. 50, No. 4, 1302-1317, 2012.
doi:10.1109/TGRS.2011.2164085

14. Cao, F., W. Hong, Y. Wu, and E. Pottier, "An unsupervised segmentation with an adaptive number of clusters using the SPAN/H/α/A space and the complex Wishart clustering for fully polarimetric SAR data analysis," IEEE Transactions on Geoscience & Remote Sensing, Vol. 45, No. 11, 3454-3467, 2007.
doi:10.1109/TGRS.2007.907601

15. Wu, Y., K. Ji, W. Yu, and Y. Su, "Region-based classification of polarimetric SAR images using Wishart MRF," IEEE Geoscience & Remote Sensing Letters, Vol. 5, No. 4, 668-672, 2008.
doi:10.1109/LGRS.2008.2002263

16. Hou, B., H. Kou, and L. Jiao, "Classification of polarimetric SAR images using multilayer autoencoders and superpixels," IEEE Journal of Selected Topics in Applied Earth Observations & Remote Sensing, Vol. 9, No. 7, 3072-3081, 2017.
doi:10.1109/JSTARS.2016.2553104

17. Krizhevsky, A., I. Sutskever, and G. E. Hinton, "ImageNet classification with deep convolutional neural networks," Proc. Adv. Neural Inf. Process. Syst., 1097-1105, 2012.

18. He, K., X. Zhang, S. Ren, and J. Sun, Delving deep into rectifiers: Surpassing human-level performance on ImageNet classification, 2015.

19. Li, Q., W. Cai, X. Wang, et al. "Medical image classification with convolutional neural network," International Conference on Control Automation Robotics and Vision, 844-848, IEEE, 2014.

20. Chen, S., H. Wang, F. Xu, and Y.-Q. Jin, "Target classification using the deep convolutional networks for SAR images," IEEE Transactions on Geoscience & Remote Sensing, Vol. 54, No. 8, 4806-4817, 2016.
doi:10.1109/TGRS.2016.2551720

21. Zhou, Y., H. Wang, F. Xu, and Y.-Q. Jin, "Polarimetric SAR image classification using deep convolutional neural networks," IEEE Geoscience & Remote Sensing Letters, Vol. 13, No. 12, 1935-1939, 2016.
doi:10.1109/LGRS.2016.2618840

22. Hirose, A., Complex-Valued Neural Networks: Advances and Applications, Wiley, 2013.
doi:10.1002/9781118590072

23. Zhang, Z., H. Wang, F. Xu, et al. "Complex-valued convolutional neural network and its application in polarimetric SAR image classification," IEEE Transactions on Geoscience & Remote Sensing, Vol. 99, 1-12, 2017.

24. Zeiler, M. D., G. W. Taylor, R. Fergus, et al. "Adaptive deconvolutional networks for mid and high level featurelearning," International Conference on Computer Vision, 2018-2025, 2011.

25. Ren, X. and J. Malik, "Learning a classification model for segmentation," International Conference on Computer Vision, Vol. 1, 10-17, 2003.

26. Cloude, S. R. and E. Pottier, "A review of target decomposition theorems in radar polarimetry," IEEE Transactions on Geoscience & Remote Sensing, Vol. 34, No. 2, 498-518, 1996.
doi:10.1109/36.485127

27. Zhu, B., J. Z. Liu, S. F. Cauley, et al. "Image reconstruction by domain-transform manifold learning," Nature, 2017.

28. Lecun, Y., L. Bottou, Y. Bengio, and P. Haffner, "Gradient-based learning applied to document recognition," Proceedings of the IEEE, Vol. 86, No. 11, 2278-2324, 1998.
doi:10.1109/5.726791

29. Zhang, Y., W. Miao, Z. Lin, H. Gao, and S. Shi, "Millimeter-wave InSAR image reconstruction approach by total variation regularized matrix completion," Remote Sens., Vol. 10, 1053, 2018.
doi:10.3390/rs10071053