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Land Cover Classification for Polarimetric SAR Image Using
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Abstract—The classification algorithms of polarimetric synthetic aperture radar (PolSAR) images
are generally composed of the feature extractors that transform the raw data into discriminative
representations, followed by trainable classifiers. Traditional approaches always suffer from the hand-
designed features and misclassification of boundary pixels. Following the great success of convolutional
neural network (CNN), a novel data-driven classification framework based on the fusion of CNN and
superpixel algorithm is presented in this paper. First, the region-based complex-valued network utilizes
both the intensity and phase information to predict the label of each pixel and constructs the label
map based on spatial relations. Second, superpixel generating algorithm is adopted to produce the
superpixel representation of the Pauli decomposition image, and the contour information which reflects
the boundary of each category is preserved. Finally, the original label map and contour information are
fused to make the decision of each pixel, outputting the final label map. Experimental results on public
datasets illustrate that the proposed method can automatically learn the intrinsic features from the
PolSAR image for classification purpose. Besides, the fusion of the superpixel features can effectively
correct the misclassification of the boundary and singular pixels, thus achieving superior performance.

1. INTRODUCTION

As synthetic aperture radar (SAR) could operate in all-weather conditions and generate high resolution
images, it has been applied in diverse applications from vehicle recognition [1] to sea ice monitoring [2, 3],
and agricultural crop identification [4]. In the last decade, land cover classification using PolSAR
images has attracted increasing attention of scholars and experts, and many classification schemes for
PolSAR images have been reported. Based on the complex Wishart distribution, Lee and Grunes [5]
developed a Wishart classifier for multi-look PolSAR data, which is a milestone in the research of
PolSAR data classification. Gao et al. [6] proposed modified mixture models to reduce the modeling
error of heterogeneous regions and designed two maximum likelihood classifiers to improve the overall
accuracy of land cover classification. Classifiers based on the assumption of other distributions,
such as Guassian distribution [7], K-distribution [8], and G-distribution [9] had also been reported.
Chen [10] et al. presented a method based on polarimetric scattering similarity, which used the major
and minor scattering mechanisms to increase the recognition rate. Recently, Wang et al. [11] presented
a segmentation method for the fully polarimetric synthetic aperture radar (PolSAR) data by coupling
the cluster analysis in the tensor space and the Markov random field (MRF) framework. In [12], Shang
and Hirose proposed a Poincare-Sphere-Parameter space based quaternion neural network for land
classification, which can be used for complicated terrains.

All of these previously mentioned approaches performed classification and identification on per-
pixel basis. The class label to a pixel was completely predicted independently, and the influences
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of the local neighborhood information had been ignored. It is generally known that polarimetric
scattering information extracted from the PolSAR image is affected by speckle noise, which could
deteriorate the results. Therefore, region-based methods are advantageous because they are able to
reduce the computation demand by working on regions instead of pixels, help the optimization procedure
converge more effectively to the global solution, and alleviate problems with noisy imagery by using
region statistics instead of individual pixel values [13]. In [14], Cao et al. proposed the agglomerative
hierarchical clustering technique, which segmented the image into a number of regions by clustering over
a polarimetric decomposition data space and then produced the final segmentation labels. Wu et al. [15]
first segmented the image into square regions and then utilized a region-based Wishart MRF framework
to classify the image samples. Yu et al. [13] incorporated region growing model and an MRF edge
strength model, and proposed a region-based unsupervised segmentation and classification algorithm.
Another PolSAR classification technique based on multilayer auto-encoder was proposed in [16], which
used RGB images to produce superpixels to integrate contextual information of neighborhood.

Convolutional neural network (CNN) has been well known in computer version areas [17] and
achieved a number of breakthroughs in image classification task [18, 19]. Li et al. [19] designed
a customized convolutional neural network with shallow layers to classify lung image patches with
interstitial lung disease (ILD). Several studies had adapted this effective approach to SAR imagery
interpretation and achieved superior performances in target recognition and terrain surface classification.
In [20], Chen et al. presented an all convolutional neural network (A-CNN) for SAR target recognition,
which only utilized convolutional layers to avoid overfitting. This method achieved an outstanding
accuracy of 99% for MSTAR 10-class datasets. In [21], Zhou et al. employed a deep CNN to achieve
92% recognition accuracy for PolSAR image classification on Flevoland benchmark data, which was
considerably better than that of the previous state of the art. A drawback of most of the traditional
SAR image classification methods is that the researchers only consider about amplitude information.
However, phase information is unique to SAR image, and it is a significant component for SAR image
classification task. Hirose [22] pioneered that complex-valued neural networks can be more effective
in various areas, such as image reconstruction and land-surface classification, as both the amplitude
and phase information can be included in the complex-valued data, thus providing more details for
processing. In [23], Zhang et al. proposed a complex-valued CNN (CV-CNN) for PolSAR image
classification and achieved better recognition accuracy on Flevoland benchmark data than conventional
classification methods.

Although the above methods have achieved considerable results, several problems remain to be
concerned when performing the SAR image classification task. 1) For the region-based methods, the
label map is constructed by the identification of the patches, which are usually extracted by a sliding
window. Thus the misclassification of the patches located at the boundary, which consist of several
categories, always degrades the recognition accuracy. 2) Different from the traditional classification
tasks, such as face recognition and vehicle identification, it is observed that PolSAR terrain image
patches are more texture-like that have no distinct structures. Hence deep layers in CNN could cause
the extracted features to be too abstract. 3) Successful supervised training of ConvNets usually needs
large amount of labeled data. Therefore, overfitting is another potential problem when training large
neural network with many parameters, especially for PolSAR image classification with a limited number
of training samples.

Hence, a new fusion model, based on the CV-CNN and superpixel segmentation, is presented
for PolSAR image classification in this paper. Rather than defining a set of features, hierarchic
representations of SAR image patches are automatically constructed by complex-valued convolutional
layer and complex-valued deconvolutional layer. The complex-valued coherency matrix, which contains
both amplitude and phase information, is taken as input of the proposed network. In particular,
we incorporate random neural node drop-out and shallow convolutional layer architecture to reduce
the number of parameters in the CNN model to avoid the over-fitting problem. On the other hand,
the superpixel generating algorithm is applied to the Pauli decomposition image to generate the
oversegmentation representation, and the contour information of each region is preserved. Then, the
contour information is adopted to correct the singular pixels and the misclassified pixels near the
boundary by the majority vote of each region. A threshold value is used to control the strength of the
optimization. The experimental results show that the proposed neural network achieves considerable



Progress In Electromagnetics Research B, Vol. 83, 2019 113

classification accuracy with features learned automatically from PolSAR image. Besides, the contour
extracted from the superpixel representation is able to preserve the boundary of each class. Thus, the
fusion model effectively reduces the misclassification of the boundary pixels and improves the recognition
accuracy.

The remainder of this paper is organized as follows. Section 2 introduces preliminaries about
PolSAR data and the components used in the recognition framework. The subsequent Section 3
formulates detailed process of the proposed fusion recognition framework, including data preprocessing,
specific architecture of the neural network, and fusion operation. Section 4 presents the experimental
results and analysis on the PolSAR datasets, including Flevoland dataset, Flevoland benchmark dataset,
Oberpfaffenhofen dataset and San Francisco dataset. Finally, the discussion and conclusion are given
in Sections 5.

2. RELATED WORK

The related theories used in our work are briefly introduced in this section, including the definition of
the complex-valued input, the introduction of building blocks used in the network, and the superpixel
generating algorithm.

2.1. Pauli Decomposition of PolSAR Data

The PolSAR characterizes the targets with fully polarized radar wave. In the natural image, each pixel
in the PolSAR is considered as the interactions of correlated coherent interference process. Usually,
each resolution cell of the basic single-look complex format is represented as a 2× 2 complex scattering
matrix.

S =
[

SHH SHV

SV H SV V

]
(1)

where SHH denotes the scattering coefficient of horizontal transmitting and horizontal receiving, SHV

the scattering coefficient of horizontal transmitting and vertical receiving, and SV V the scattering
coefficient of vertical transmitting and vertical receiving [23]. In particular, SHV and SV H are assumed
identical in the monostatic case.

According to [26], S can be represented as:
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where
a =

(SHH + SV V )√
2

, b =
(SHH − SV V )√

2
, c =

√
2SHV (3)

The polarimetric scattering information can be regarded as a 3-D scattering vector k, and k can
be represented as:

k = 1√
2
[SHH + SV V SHH − SV V 2SHV ]T (4)

Then the coherency matrix of PolSAR data is obtained as follows:

T = kkH =

⎡
⎣ T11 T12 T13

T21 T22 T23

T31 T32 T33

⎤
⎦ =

⎡
⎢⎣

2|a|2 2ab∗ 2ac∗

2a∗b 2|b|2 2bc∗
2a∗c 2b∗c 2|c|2

⎤
⎥⎦ (5)

where ·H denotes the conjugation transpose operation.

For the multilook case, T = 1
n

n∑
i=1

kikH
i , and n is the number of looks. It is obvious that the

coherency matrix T is a Hermitian matrix whose diagonal elements are real numbers, while off-diagonal
elements are complex-valued. Elements {T11, T12, T13, T22, T23, T33} in the upper triangular part of the
coherency matrix are adopted as the input samples.
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2.2. Definition of the Related Neural Network

Convolutional): In a typical convolution process, the input data convolve multiple learnable filters
(convolutional kernels) in parallel. The convolutional results are fed to nonlinear activation functions,
such as sigmoid or rectified linear unit (ReLU), to generate the same number of feature maps as
convolutional filters. The hidden units in the same feature map share identical weights, and they
can be regarded as feature extractors, which detect specific features at each position of the previous
layer. So, each feature map represents a unique feature at a different position of the previous layer. The
details of the complex-valued convolutional process can be presented as follows.

In the convolution layer, the previous layer’s input feature maps Ol−1
i (i = 1, . . . I) are connected

to all output feature maps Ol
j(j = 1, . . . , J), where Ol−1

i (x, y) is the unit at the position (x, y) of the
i-th input feature map, and Ol

j(x, y) is the unit at the position (x, y) of the j-th output feature map.
Then, Ol

j(x, y) can be calculated by:

Ol
j(x, y) = g(V l

j (x, y)) (6)

V l
j (x, y) =

I∑
i=1

f l
ji ∗ Ol−1

i (x, y) + bl
j =

I∑
i=1

F−1∑
v=0

F−1∑
u=0

f l
ji(u, v) · Ol−1

i (x − u, y − v) + bl
j (7)

where g(·) denotes the nonlinear activation function, V l
j (x, y) the translated feature map after filters,

F the size of the filter, f l
ji the bank of filters (convolutional kernel), and bj the bias of the j-th output

feature map. The hyperparameters in a convolutional layer include the number of feature maps (J),
filter size (F ), stride (S), and zero-padding (P ). The stride means the intervals to apply the filters to
the input image. Zero-padding is a common technique to preserve the spatial size of the feature maps.
If the input is composed of I feature maps with size W1 × H1, then the output will be J feature maps
with size W2 ×H2, where W2 = (W1 −F + 2P )/S + 1 and H2 = (H1 −F + 2P )/S + 1. A common view
of the convolution filters is that higher layer tends to have more feature maps than the lower layer, and
stride 1 and using small filters usually leads to a better performance [20].

Deconvolution): The deconvolutional layer uses a decoder-only model to synthesize the feature
maps [24]. Considering a single deconvolutional network layer applied to feature maps Ol which is
composed of J channels (Ol

1, . . . , O
l
J ), and each channel can be represented as a linear sum of K1 latent

feature maps zk convolved with filters fkj:

Ol
j =

K1∑
k=1

zk ∗ fkj (8)

If the size of Ol
j is W × H and the filters is of size F × F , then the latent feature maps are

(W +F − 1)× (H +F − 1) in size. A sparsity regularization term is introduced on zk to find the unique
resolution for the under-determined system, and the overall cost function can be presented as:

L(Ol) =
λ

2

J∑
j=1
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K1∑
k=1

zk ∗ fkj − Ol
j
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2

2

+
K1∑
k=1

|zk|p (9)

where J represents the number of input feature maps, and K1 represents the number of latent feature
maps. |·|p denotes the sparse p-norm on the vectorial version of the matrix, and p = 1 typically. λ is
the tradeoff that balances the contribution of reconstruction and the sparsity. Unlike traditional neural
network, the filters are learnt by alternately optimizing the filters and feature maps: keep the filters
fixed when minimizing L(Ol) over feature maps and keep the feature maps fixed when minimizing L(Ol)
over filters.

Softmax): When dealing with multiclass classification problems, the softmax classifier composed
of one or more fully connected layers is often used in the final output layer. The feature maps are flatted
to one-dimensional vector before feeding to the fully connected layer at first, and the output of a fully
connected layer is a C × 1 vector, where C represents the number of classes. The softmax function used
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to perform the complex-valued multiclass logistic regression is represented as:

Si =
eai∑
c eac

(10)

where ai represents the i-th element in the vector, and Si represents the probability of i-th class. Given
a labeled training dataset of N samples {(xi, yi), i = 1, . . . , N}, where yi is the true complex-valued
label. Then, the cross-entropy loss function is represented as:

L = − 1
N

N∑
i=1

log Si (11)

In complex-valued domain [23], the loss function is represented as:

L = − 1
2N

N∑
i=1

[log(
e�[ai]∑
c e�[ac]

) + log(
e�[ai]∑
c e�[ac]

)] (12)

where �[ai] and �[ai] represent the real and imaginary parts of ai, respectively.
The trainable weight matrix could be optimized to increase the probability of the correct class label

by minimizing the loss function. An L2 regularization term is usually adopted in the loss function to
prevent overfitting in practice.

2.3. Superpixel Algorithm

The idea of superpixel was originally proposed by Ren and Malik [25] in 2003. By computing the intra-
region similarity and inter-region similarity, including brightness, texture, and contour energy, all the
neighboring similar pixels are connected to construct a perceptually consistent unit, named superpixel.
The superpixel representation of a neural image can be regarded as a segmentation of the image, and
the pixels in each region are homogeneous. Usually, the complexity of the processed image can be
greatly reduced, as a small number of superpixels are generated by iterative clustering to represent
the numerous pixels of the original image. Several superpixel methods, including Mean Shift, SEEDS
(Superpixels Extracted via Energy-Driven Sampling), and SLIC (simple linear iterative cluster), have
been widely applied to computer vision areas, such as image segmentation, pose estimation, target
tracking, and object detection. Compared with traditional pixel-based techniques, SLIC has several
advantages which are adopted in this study:

1) The image is firstly transformed into a Lab color model. Therefore, the superpixel can be applied
to segmenting not only the RGB image but also the gray image.

2) The generated superpixels are compact and arrayed. The boundary and neighboring information
of pixels are preserved. The pixel-based techniques can be easily transformed and applied to the
superpixel representation.

3) The complexity and consuming time are greatly reduced, while the superpixel can produce a
more descriptive and effective representation than traditional pixel-based techniques.

3. METHODS

In this section, the proposed classification method for polarimetric SAR data is presented in detail.
First, as the normalization is essential for the CV-CNN, the data preparation for the PolSAR image is
briefly introduced. Second, we present the specific configuration of the proposed network. Then, the
description of the whole classification model, which is based on the fusion of superpixel method and the
convolutional network, is presented.

3.1. Data Preparation

For the region-based PolSAR image classification, the label of each pixel is identified by a local patch,
which is defined by a neighborhood window of size W × H. Therefore, not only the polarimetric
characteristic and intensity information are captured, but also the relationship between a pixel and its
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neighbors is adopted to contribute to the feature extraction. For a large PolSAR image, a sliding widow
is utilized to generate a number of patch images, which can be adopted for training and evaluation. As
introduced in Subsection 2.1, the patch image is formed with six channels.

In order to achieve a better performance, preprocessing for the patch image is necessary. The
zero-mean normalization is applied to the raw data. For instance, for each channel, the average μ and
standard deviation σ are first calculated, and then all samples of each channel are normalized. The
formula can be presented as follows:

μ =
1
n

n∑
i=1

Ti (13)

σ =

√√√√√√
n∑

i=1

(Ti − μ)(Ti − μ)

n
(14)

Tnor =
T − μ

σ
(15)

where (Ti − μ) denotes the conjugate.

3.2. Configuration of the Proposed Neural Network

As shown in Fig. 1, the architecture of the proposed neural network can be presented as a cascading
of convolutional neural networks, followed by several fully connected layers. Different from traditional
target images with large scale, the generated PolSAR images consist of no distinct structures such as
corners. Deep layers in CNN would lost the advantage on feature extraction and make the extracted
features too abstract. The combination of convolutional layer and deconvolutional layer has been proved
effective in adaptive feature learning [24] and image reconstruction [27,29]. Therefore, a convolutional
layer is firstly adopted to take the advantage of spatial relationship between pixels and to learn the
low-level feature representations. Then, the deconvolutional layer, which can be regarded as a decoder,
is utilized to reconstruct the high-level feature representation for classification. The output feature is
then reshaped into a vector and feed to the following fully connected layer. The output of the fully
connected layers is regarded as the corresponding labels.

Figure 1. Structure of proposed network.

The specific arrangement of each layer is shown in Fig. 2. As the input image consists of six channels
with the size of 12×12, the input layer is fixed to the size 12×12×6. In the first convolution layer, the
input image is filtered by 16 convolution filters of size 3× 3× 6 with stride 1. The convolutional results
are activated by ReLU, producing 16 feature maps with the size of 10×10. The second layer deconvolves
the feature maps with 16 filters of 3×3×6 with stride 1, activated by ReLU and reconstructing a feature
map with size 12 × 12. The feature map is then reshaped to a vector with dimension of 144 and fed to
the first fully connected layer. The dropout technique is used in this layer, and the probability is fixed
to 0.5. The ReLU is also selected as the activation function of the fully connected layer. The result is
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Figure 2. Arrangement of each layer.

fed to the second fully connected layer, and the output layer contains the same number of units as the
classification classes C. For example, C is 15 for Flevoland dataset.

As in most deep learning algorithms, all the weight and bias are learned by minimizing the loss
function. Usually, it is not possible to compute the global minimum of the loss function directly. Several
approaches have been studied to optimize the learning process [28], such as stochastic gradient descent
(SGD) and momentum. In this study, the parameters are learned by SGD to minimize the loss function
in backpropagation. By computing the error gradient of parameters, the parameters can be updated
with the following rule:

wk+1 = wk − η(∂L/∂wk) (16)

bk+1 = bk − η(∂L/∂bk) (17)

where η is the learning rate, and k is the number of iterations.

3.3. Classification with Information Fusion

As described above, the patch images, which are adopted as training and testing samples, are generated
by the sliding window. The convolutional network is able to take the advantage of the spatial structure
and produce robust and accurate result. Meanwhile, it must be noticed that the patch image extracted
at the boundary, which is composed of pixels from several categories, will confuse the pre-trained
network and cause misclassification. On the other hand, because of the stride of the sliding window,
the predicted label usually needs to be repeated in a small block. The misclassification of single pixel
will lead to the error of the neighborhood.

To solve these problems, a novel PolSAR image classification method using convolutional network
and superpixel is introduced in this section. The detailed classification process is illustrated in Fig. 3.
The proposed recognition framework is composed of two branches: the extraction of superpixel structure
and the prediction based on region-based CNN. Then, the region and contour information are adopted

Figure 3. Structure of proposed framework.
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to correct the original predicted labels, outputting the integrated result. The introduction of each part
is presented as follows:

Superpixel: First, to oversegment the image, Pauli decomposition is applied to form the RGB image.
Then, the SLIC algorithm is applied to the RGB image to generate the superpixel representation. Each
region is a homogeneous area. Small superpixels are combined to form a large superpixel, and the
contour information of each superpixel is retained.

Convolutional neural network: As described in Section 2, the input data (complex-valued coherency
matrix) consists of six channels, represented as {T11, T12, T13, T22, T23, T33}. First, a sliding window is
applied to extract patch images of each channel. The corresponding label of the central pixel in each
patch is also extracted to form the label vector. A small part of these labeled images are adopted to
train the convolutional network, and the rest images are utilized to evaluate the performance of the
trained network. After the training of the neural network, the whole patch image dataset is fed to the
trained convolutional network, producing the corresponding label of each pixel. The predicted label
vector is then reshaped to reconstruct the 2-D label map. Part of the label map is show in Fig. 3, which
is presented as “Origin Labels”.

Fusion: It can be observed from Fig. 3 that the label map directly generated by the convolutional
network suffers from the misclassification of the boundary pixels. Furthermore, there are some singular
pixels within some regions. On the other hand, comparing the superpixel representation with the
RGB image, it is obvious that the pixels in one region are homogeneous. Besides, the boundary of
each category is retained by the superpixels from the comparison of RGB image. Thus, the contour
structure information provided by superpixel method is then applied to correct the misclassification of
these pixels.

Assuming that the oversegmentation is constructed by the SLIC method, the procedure is
summarized as follows:

1. Adopt the contour structure to divide the origin label map into R regions {G1, · · ·, GR}. Let Mr

be the number of pixels in region Gr.
2. Compute the number of pixels belonging to each category in Gr and express the result as

Num (c, qc), where c denotes the label, and qc denotes the number of pixels with label c, Mr =
C∑

c=1
qc.

3. Compute the max ratio pcr for pixels of each category in Gr, where pcr =
C

max
i=1

( qi
Mr

).

4. Select a threshold value Ts. If pcr ≥ Ts, replace the other labels with c, else, keep the origin
labels of each pixel.

4. RESULTS AND ANALYSIS

In this section, experiments on several PolSAR datasets are performed to verify the effectiveness of the
proposed recognition framework. (1) Flevoland dataset: This PolSAR dataset of Flevoland is a subset
of an L-band four-look image acquired by Airborne SAR (AIRSAR). It measures (750 × 1024) pixels
which consist of 15 categories. (2) Oberpfaffenhofen dataset: This dataset is measured by electronically
steered array radar (ESAR) over Oberpfaffenhofen in Germany. It covers a size of 1300 × 1200 and
contains 3 categories. (3) Flevoland Benchmark dataset: This PolSAR data is the benchmark dataset
of an AIRSAR data obtained over Flevoland. It covers a size of (1020 × 1024) pixels and contains 14
categories. (4) San Francisco dataset: This PolSAR is acquired by Airborne SAR (AIRSAR), covering a
size of (900× 1024) pixels and containing about 5 categories. The overall accuracy (OA) and confusion
matrix are used to evaluate the performance of the proposed methods. Moreover, the CV-CNN model
and RV-CNN model are used to compare with the performance of the proposed fusion model.

4.1. Experiments on Flevoland Dataset

The first experiment was performed on the dataset of Flevoland, which is an agriculture area of the
Netherlands. An RGB image (750 × 1024) formed with the intensities from Pauli decomposition is
shown in Fig. 4(a), and its ground truth map is shown in Fig. 4(b). There are in total 15 identified
classes including stem beans, peas, forest, lucerne, three types of wheat, beet, potatoes, bare soil, grass,
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(b)(a) (c)

Figure 4. Flevoland dataset. (a) Pauli RGB composition. (b) Ground truth map; (c) Legends of
Ground truth map.

(b)(a)

Figure 5. Classification results on variable coefficients. (a) OA of variable sample rates. (b) OA of
variable threshold value.

rapeseed, barley, water, and a small number of buildings. The legends of the ground truth are shown
in Fig. 4(c).

For the labeled pixels near the boundary which is selected as the center of the sliding window
(12 × 12), a zero-padding strategy is applied to those pixels outside the image region. According to
previous research [24], a lower sample rate is generally acceptable for the classification of small number
of classes. On the other hand, the structure of the proposed network is not complex. Thus, a range of
1%–15% for sample rate is utilized to evaluate the performance, and the results are shown in Fig. 5(a).
As can be seen from Fig. 5(a), the classification accuracy increases rapidly when the sampling rate
increases from 1% to 5%. The accuracy becomes stable at about 97% when the sampling rate is greater
than 10%. Therefore, 10% sampling rate is suitable for the Flevoland case, and 14000 samples are
selected as training samples in this research.

Another experiment is conducted to analyze the sensitivity on variable threshold value Ts, and the
results are shown in Fig. 5(b). When Ts = 0, each region is filled up with the label which takes up
the biggest share in that region. The performance depends mainly on the validity of the superpixels.
Hence, the OA is little lower than the other cases. When Ts = 1, the label of each pixel is entirely
identified by the proposed network, and the misclassification directly degrades the OA, especially for
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the misclassification of the boundary pixels. As can be seen form Fig. 5(b), the range of 0.5 to 0.9 is
acceptable for the decision fusion model, and the threshold value Ts is fixed 0.8 for the Flevoland case.

As illustrated in Fig. 2, the filter size is 3×3 for both convolutional layer and deconvolutional layer.
Hyperparameters are chosen as follows: the learning rate η is 0.5; the probability of dropout is 0.5; the
batch size is 100 with 50 training epochs. The initial number of the superpixels is fixed to 1200, and
the threshold value Ts is fixed as 0.8.

Figure 6(a) shows the origin classification result of the proposed neural network. Figs. 6(b) and
6(c) show the results of the fusion model and the areas with the ground truth. Fig. 7(a) shows the final
classification of the comparing CV-CNN for the whole dataset, and Fig. 7(b) shows the results of the
areas with the ground truth. From Fig. 6, it can be found that the classification results are in good
agreement with the ground truth map at the first sight. Compared with Figs. 6(a) and 7(a), from which
the speckles can be easily observed, we can find that most of the singular pixels within the regions have
been corrected with the superpixel information in Fig. 6(b). Furthermore, the boundary of Fig. 6(b) is
clearer than Figs. 6(a) and 7(a), especially for smooth areas such as forest, bare soil, and water.

(b)(a) (c)

Figure 6. Classification results of the proposed algorithm on the Flevoland dataset. (a) Result of the
proposed network. (b) Final result of the fusion framework. (c) Final result overlaid with the ground
truth map.

(b)(a)

Figure 7. Classification results of the CV-CNN algorithm on the Flevoland dataset. (a) Result of the
CV-CNN. (b) CV-CNN result overlaid with the ground truth map.

The detailed classification results compared with the ground truth are listed in Table 1, and the
confusion matrix of the fusion model is shown in Table 2. The OAs of CV-CNN and the proposed
network are 96.4% and 96.7%, and is 98.3% for the fusion model. Note that a considerable improvement
of 1.9% in terms of classification accuracy has been achieved by combining the hierarchical information
of network with superpixels structure information.

From Table 2, it can be seen that the majority classes have a correct rate higher than 90%, except
for building areas. It shows that the continuous areas, which have enough training samples, are easy
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Table 1. OA of each category for the whole dataset.

Class CV-CNN Proposed network Fusion model
Stem beans 97.8 94.1 98.1

Peas 97.2 97.4 96.9
Forest 96.9 96.8 98.5

Lucerne 95.2 98.1 98.2
Wheat 94.8 95.0 97.7
Beet 96.3 97.2 96.5

Potatoes 94.8 95.3 97.1
Bare soil 98.2 98.4 100

Grass 89.7 94.3 90.1
Rapeseed 92.6 92.1 92.5
Barley 95 95.5 98.7
Wheat2 91.7 91.6 92.8
Wheat3 97.1 96.6 98.4
Water 97.7 98.5 100

Buildings 85.5 83.3 88.6
OA 96.4 96.7 98.3

Table 2. Confusion Matrix of the proposed recognition framework.

% 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 98.1 0.1 0.0 0.2 0.0 1.2 0.2 0.0 0.1 0.0 0.0 0.0 0.0 0.1 0.0

2 1.0 96.9 0.0 0.0 0.5 0.2 0.0 0.0 0.1 1.3 0.0 0.0 0.0 0.0 0.0

3 0.1 0.0 98.5 0.0 0.1 0.0 0.6 0.0 0.0 0.0 0.7 0.0 0.0 0.0 0.0

4 0.1 0.0 0.0 98.2 0.0 0.5 0.2 0.0 0.0 0.5 0.1 0.4 0.0 0.0 0.0

5 0.0 0.2 0.0 0.0 97.7 0.1 0.0 0.1 0.3 0.7 0.0 0.8 0.0 0.1 0.0

6 0.2 0.0 0.0 0.2 0.0 96.5 0.9 0.2 0.2 1.5 0.3 0.0 0.0 0.0 0.0

7 0.1 0.0 0.4 0.1 0.1 1.6 97.1 0.0 0.0 0..1 0.1 0.0 0.5 0.0 0.0

8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 100.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

9 1.4 0.8 0.0 0.7 0.0 3.9 1.6 0.0 90.1 0.0 1.2 0.0 0.0 0.3 0.0

10 0.1 0.9 0.1 0.1 3.3 1.0 0.1 0.0 0.5 92.5 0.1 1.0 0.2 0.1 0.0

11 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.0 1.1 0.1 98.7 0.0 0.0 0.0 0.0

12 0.0 0.4 0.0 0.0 2.0 0.0 0.0 0.4 0.2 4.1 0.0 92.8 0.0 0.1 0.0

13 0.0 0.0 0.3 0.0 0.6 0.0 0.0 0.0 0.0 0.2 0.4 0.1 98.4 0.0 0.0

14 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 100.0 0.0

15 11.1 0.0 0.0 0.0 0.2 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.0 0.0 88.6

1 stem beans; 2 peas; 3 forest; 4 lucerne; 5 wheat; 6 beet; 7 potatoes;

8 bare soil; 9 grass; 10 rapeseed; 11 barley; 12 wheat 2; 13 wheat3; 14 water; 15 buildings

to obtain higher accuracy. Less training samples usually lead to the misclassification with others, such
as building areas and grass. The fusion model has obtained considerable improvement of the majority
classes, especially for the large and homogeneous areas, such as Barley, Bare soil, and Water.

Through the analysis on Fig. 6, Fig. 7, Table 1, and Table 2, the reason that the proposed framework
obtained a higher accuracy can be summarized as follows: 1) The proposed network utilized complex-
valued input data, which consists of both the intensity and the phase information of SAR images. As
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introduced in [24], the phase distribution varies obviously with the categories but stable for the same
category in different areas. Thus, the complex-valued neural network can obtain more accurate feature
representations form the raw data and improve the recognition accuracy. 2) The terrain region extracted
by the sliding window is more texture-like and contains less spatial structure features. Too many layers
would produce too abstract features and decrease the recognition accuracy. The proposed network
constructed the feature representations from the convolutional result without pooling operation which
would reduce the size of feature maps and abandon some useful information, thus generating reliable
features based on the spatial structure. 3) The fusion model adopted the superpixel information to
correct the singular pixels within the terrain region. Beside, as can be seen from Fig. 3, the contours
of the superpixels are in good agreement with the boundary of each region. Hence, using the contour
of each superpixel to redetermine the labels of each region can effectively reduce the misclassified
boundary pixels. The use of the threshold value also prevents the poor superpixel from further reducing
the recognition performance.

4.2. Experiments on Oberpfaffenhofen Dataset

Figure 8(a) shows the Pauli RGB image of the Oberpfaffenhofen in Germany, which is of the size
1300 × 1200. The ground truth and the corresponding legend are shown in Figs. 8(b) and 8(c). There
are mainly three categories, including open areas, wood land, and build-up areas. 14000 labeled pixels,
about 1%, are randomly selected as the centers to generate the training samples. The sliding window
of the size 12 × 12 is utilized to extracted the patch images, and the corresponding labels of the center
pixels are used to guide the training of the proposed network. Parameters of the whole framework are
set as follows: the learning rate η is 0.8; the probability of dropout is 0.5; and the batch size is 100 with
50 training epochs. The initial number of superpixels is fixed to 600, and the threshold value Ts is fixed
at 0.7.

(b)(a) (c)

Figure 8. Oberpfaffenhofen dataset. (a) Pauli RGB composition. (b) Ground truth map. (c) Legend
of Ground truth map.

Figure 9(a) illustrates the results of CV-CNN, and the results of the proposed fusion model are
shown in Fig. 9(b). Compared with Fig. 8(b), Fig. 9(b) shows that the proposed fusion model performs
better in majority areas. It can be seen that this SAR image is more complicated than Flevoland, as
the boundary is irregular, and there are similarities between the build-up areas and the wood land.
Thus, several regions are obviously affected by the misclassification, especially the wood land areas and
build-up areas. Comparing Fig. 9(b) with 9(a), it can be observed that the result of the fusion model
matches much better with the ground truth, and the labeled regions are more homogeneous than the
CV-CNN model. Fig. 9(c) illustrates the superpixel presentation for part of the RGB image, the contour
information of each region, and the final results of the regions. We can find that the contour information
matches well with the boundary of each region for each category, and the optimized classification result
map is in better agreement with ground truth map than CV-CNN.

The detailed results of the methods are shown in Table 3. We can find that a considerable
improvement of the classification accuracy for build-up areas has been achieved by the optimization
of the superpixels, as a number of the misclassified pixels have been corrected by the vote operation.
Compared with CV-CNN, the proposed fusion model achieves about 2% gain in this case.
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(b)(a) (c)

Figure 9. Oberpfaffenhofen dataset. (a) Results of CV-CNN. (b) Results of the proposed fusion model.
(c) Superpixel presentation for part image.

Table 3. Confusion matrix of the oberpfaffenhofen dataset.

Methods Fusion Model CV-CNN
Categories Open Wood Build-up Open Wood Build-up

Open 95.9 0.4 3.7 94.6 0.2 5.2
Wood 2.8 92.3 4.9 0.7 92.1 7.2

Build-up 2.2 1.5 96.3 5.5 3.2 91.3
OA 95.6 93.2

4.3. Experiment on Flevoland Benchmark Dataset

Another experiment has been conducted to evaluate the performance of the proposed fusion model on
the Flevoland Benchmark dataset, which is of the size 1020×1024. The PolSAR RGB image is shown in
Fig. 10(a), and the ground truth map is shown in Fig. 10(b) along with the legend of labels in Fig. 10(c),
which is collected from [24]. 14000 patch images are randomly selected as the training samples. All the
samples are generated by a sliding window, which is of the size 12 × 12. The parameters used in the
recognition task are set as follows: the learning rate η is 0.5; the probability of dropout is 0.5; and the
batch size is 100 with 80 training epochs. The initial number of the superpixels is fixed at 1200, and
the threshold value Ts is fixed at 0.7.

(b)(a) (c)

Figure 10. Flevoland Benchmark dataset. (a) Pauli RGB composition. (b) Ground truth map. (c)
Legend of Ground truth map.

Figure 11 shows the final classification results of comparison methods (RV-CNN and CV-CNN) for
the whole dataset, where Figs. 11(a) and 11(b) represent the results of RV-CNN, and Figs. 11(c) and
11(d) represent the results of CV-CNN, respectively. The final result of the proposed fusion model is
shown in Fig. 12. As shown in Fig. 12(b), the label map is in good agreement with the ground truth
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(b)(a) (d)(c)

Figure 11. Flevoland Benchmark dataset. (a) Classification result of RV-CNN. (b) RV-CNN overlaid
with ground truth. (c) Classification result of CV-CNN. (d) CV-CNN overlaid with ground truth.

(b)(a)

Figure 12. Flevoland Benchmark dataset. (a) Classification result of the proposed Fusion model.
(b) Fusion model overlaid with ground truth.

Table 4. Classification results of the Flevoland Benchmark dataset.

% RV-CNN CV-CNN Fusion model
Potato 97.9 99.8 99.6
Fruit 96.2 98.3 97.2
Oats 96.2 98.1 99.0
Beet 96.4 96.2 98.4

Barley 99.6 99.6 99.8
Onions 70.8 93.2 94.8
Wheat 99.0 99.9 99.4
Beans 84.6 90.5 88.9
Peas 94.4 98.3 100
Maize 90.2 98.5 92.6
Flax 92.9 96.6 96.3

Rapeseed 98.8 99.4 99.9
Grass 92.2 96.6 96.8

Lucerne 90.9 98.2 99.5
OA 97.1 98.7 99.0
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image. For the comparison method, most of the pixels also match well with the ground truth image.
The CV-CNN is more robust than RV-CNN in the labeled regions form the comparison of Fig. 11(b)
and Fig. 11(d). A reasonable explanation is that the combination of phase information compensates
for the deficiency of the traditional feature representations. Therefore, it is more convenient to obtain
higher recognition accuracy. However, the misclassification (singular pixels and the boundary) can be
obviously observed in Figs. 11(a) and 11(c). Comparing Fig. 12(a) with Fig. 11(a), it can be seen
that some misclassified pixels have been corrected by the neighbors within the superpixels, especially
for the categories with large samples, such as wheat, barley, and rapeseed. The superior performance
obviously presents the advantage of the fusion model. On the other hand, for the regions where the qc

is smaller than the fixed threshold value Ts, the original labels have been retained to prevent further
misclassification.

The classification results of the benchmark dataset for each category are shown in Table 4. It
can be seen that the proposed fusion model has obtained better performance in majority categories
than RV-CNN and CV-CNN. Compared with RV-CNN, we can find that with the use of intensity and
phase information, CV-CNN and the proposed model could effectively reduce the misclassification of
the confusing categories, such as onions and beans. Besides, the fusion model could help to correct the
misclassified pixels, thus improving the OA.

Table 5. Confusion matrix of the Flevoland benchmark dataset.

% 1 2 3 4 5 6 7 8 9 10 11 12 13 14
1 99.6 0.0 0.0 0.0 0.0 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
2 0.7 97.2 0.0 1.0 0.6 0.0 0.0 0.0 0.4 0.0 0.0 0.1 0.0 0.0
3 0.0 0.0 94.0 0.6 1.5 1.1 0.0 0.0 0.0 2.8 0.0 0.0 2.0 0.0
4 0.5 0.0 0.0 98.4 0.0 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2
5 0.0 0.0 0.0 0.0 99.7 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.1
6 0.0 0.0 0.0 0 0.6 88.8 1.3 0.3 0.0 8.9 0.0 0.0 0.0 0.0
7 0.0 0.0 0.0 0.0 0.0 0.0 99.4 0.0 0.0 0.0 0.0 0.5 0.0 0.1
8 0.0 0.0 0.3 1.1 0.0 3.0 0.0 88.9 0.0 0 0 1.6 0.3 0.0
9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 99.9 0.0 0.0 0.1 0.0 0.0
10 0.0 0.0 0.0 6.4 0.0 0.9 0.0 0.0 0.0 92.6 0.0 0.0 0.0 0.0
11 0.0 0.0 0.0 0.9 0.0 0.0 0.0 1.7 0.0 0.0 94.3 0.6 0.0 0.0
12 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 99.9 0.0 0.0
13 1.1 0.0 0.0 10.0 0.0 2.0 7.9 0.2 1.9 0.6 0.0 1.6 72.9 1.8
14 0.0 0.0 0.0 0.0 0.0 0.2 0.0 0.0 0.0 0.0 0.0 0.3 0.0 99.5
1 Potato; 2 Fruit; 3 Oats; 4 Beet; 5 barley; 6 Onions; 7 wheat; 8 Beans;

9 Peas; 10 Maize; 11 Flax; 12 Rapeseed; 13 Grass; 14 Lucerne

Table 5 lists the confusion matrix of the proposed method. It can be seen from Table 5 that
accuracies of all the categories are higher than 90%, and some of them are close to 100%, which shows
that the proposed framework has achieved considerable performance.

4.4. Experiment on San Francisco Dataset

This experiment was carried out on the dataset of San Francisco. An RGB image (900 × 1024) formed
with the intensities from Pauli decomposition is shown in Fig. 13(a), and its ground truth map is shown
in Fig. 13(b). There are in total 5 identified classes including vegetation, sea, developed urban, low-
density urban, and high-density urban. The legend of the ground truth is shown in Fig. 13(c). 14000
patch images are randomly selected as the training samples. All the samples are generated by a sliding
window, which is of the size 12 × 12. The parameters used in the recognition task are set as follows:
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(b)(a)

Figure 13. San Francisco dataset. (a) Pauli RGB composition. (b) Ground truth map and Legend.

(b)(a)

Figure 14. San Francisco dataset. (a) Original classification labels; (b) Fusion classification labels.

the learning rate η is 0.5; the probability of dropout is 0.5; and the batch size is 100 with 80 training
epochs. The initial number of the superpixels is fixed at 400, and the threshold value Ts is fixed at 0.7.

Figure 14 shows the classification results of the proposed original framework and the fusion model.
It can be clearly seen from the ground truth map that the areas on the graph are uniformly continuous.
Thus, the proposed framework has obtained a remarkable original overall classification rate (about
97.62%), especially for the sea area (about 99.76%) and the high-density urban area (about 99.07%).
An obvious improvement can be seen from Fig. 14(b) that majority of the misclassified pixels near the
boundary between high-density urban and vegetation have been corrected after the fusion model, and
the overall classification rate is about 98.91%.

In addition, the average computation time of the four datasets for each component (generating
original label, superpixel, generating fusion label) is listed in Table 6. The devices for the testing
experiment are as follows: Memory: 16G; GPU: 1050 Ti; System: Win7. The training time is ignored
as it costs several hours to generate a trained model. As shown in Table 6, it takes similar time to

Table 6. Comparison of average computation time on four datasets.

Generating original labels Original labels Superpixels Fusion All time
RV-CNN 47.6 s - - 47.6 s

Proposed Model 52.7 s 80.3 s 1.2 s 134.2 s
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generate original labels for RV-CNN and the proposed complex model. The time cost for superpixel is
related to the image size. Typically, as listed in table, the average time to extract superpixel information
for the four data sets is about 80.3 s, and the fusion time is about 1.2 s. Generally speaking, as the SAR
image terrain recognition is not a real-time task, it is reasonable to utilize the superpixel information
to correct the original label and improve the recognition accuracy.

5. CONCLUSIONS

This paper proposes a new network based on complex-valued CNN for PolSAR image classification.
The patch images extracted from raw coherency matrix are fed to the input layer. Then, the proposed
network extracts nonlinear relationship between the input samples automatically. The superpixel
generating algorithm (SLIC) is used to produce oversegmentation representation of RGB image. The
contour information is adopted to retain the relations between pixels. A threshold value is used to
balance the strength of the final decision fusion, which is able to reduce the effect of speckle noise.
Therefore, better consistency is observed in final results. The proposed network can be regarded as a
feature extractor which projects the original low-level input data onto a high-level feature space and
extracts the inner concepts embedded in the complex-valued PolSAR data. Its advantage is that we can
use a small number of parameters to automatically characterize the complex structure of the PolSAR
data. With the use of dropout operation, it is able to avoid the overfitting, which is important for
learning with limited training samples. The combination of convolutional layer and deconvolutional
layer is effective for constructing the relationships between the neighbor pixels. On the other hand, the
superpixel representation shows its advantage for matching the boundary of the Pauli decomposition
image, which is essential to correct the misclassified pixels near the boundary. Different from traditional
post-processing methods which use fixed window to optimize the label map, the contour information
follows the structure of each category which means that it can be used for terrain classification which
has complex and irregular structures, such as Oberpfaffenhofen. By this way, the impacts of complex
terrains and noise on classification will be alleviated. It is still worth noting that with a suitable
threshold value, the fusion framework is able to inherit the advantage from both network and superpixel
algorithm. Therefore, the final label map produced by the fusion framework not only has high accuracy
for each pixel, but also could correct the misclassified pixels near the boundary effectively. The future
work includes improving the proposed method using better parameters selection and adaptive threshold
value and applying it to the terrain classification.
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