1. Pendry, J. B., A. J. Holden, D. J. Robbins, and W. J. Stewart, "Low frequency plasmons in thin-wire structures," J. Phys.: Condens. Matter, Vol. 10, 4785-4809, 1998.
doi:10.1088/0953-8984/10/22/007
2. Pendry, J. B., A. J. Holden, D. J. Robbins, and W. J. Stewart, "Magnetism from conductors and enhanced nonlinear phenomena," IEEE Trans. Microw. Theory Techn., Vol. 47, No. 11, 2075-2084, 1999.
doi:10.1109/22.798002
3. Smith, D. R., W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, "Composite medium with simultaneously negative permeability and permittivity," Phys. Rev. Lett., Vol. 84, No. 18, 4184-4187, 2000.
doi:10.1103/PhysRevLett.84.4184
4. Joannopoulos, J. D., S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals: Molding the Flow of Light, Princeton University Press, 2011.
doi:10.2307/j.ctvcm4gz9
5. Yang, Z., F. Gao, X. Shi, X. Lin, Z. Gao, Y. Chong, and B. Zhang, "Topological acoustics," Phys. Rev. Lett., Vol. 114, No. 11, 114301, 2015.
doi:10.1103/PhysRevLett.114.114301
6. Haldane, F. D. M., "Model for a quantum Hall effect without Landau levels: Condensed-matter realization of the ``parity anomaly''," Phys. Rev. Lett., Vol. 61, No. 18, 2015-2018, 1988.
doi:10.1103/PhysRevLett.61.2015
7. Tsang, L., K.-H. Ding, and S. Tan, "Broadband point source Green’s function in a onedimensional infinite periodic lossless medium based on BBGFL with modal method," Progress In Electromagnetics Research, Vol. 163, 51-77, 2018.
doi:10.2528/PIER18071802
8. Leung, K. M. and Y. Qiu, "Multiple-scattering calculation of the two-dimensional photonic band structure," Physical Review B, Vol. 48, No. 11, 7767-7771, 1993.
doi:10.1103/PhysRevB.48.7767
9. Tsang, L., "Broadband calculations of band diagrams in periodic structures using the broadband Green’s function with low wavenumber extraction (BBGFL)," Progress In Electromagnetics Research, Vol. 153, 57-68, 2015.
doi:10.2528/PIER15082901
10. Kohn, W. and N. Rostoker, "Solution of the Schrodinger equation in periodic lattices with an application to metallic lithium," Physical Review, Vol. 94, 1111-1120, 1954.
doi:10.1103/PhysRev.94.1111
11. Silveirinha, M. and C. A. Fernandes, "A new method with exponential convergence to evaluate the periodic Green’s function," Proc. IEEE APS/URSI Symp., Vol. 2, 805-808, Columbus, OH, Jun. 2003.
12. Ewald, P. P., "Die berechnug optischer und elekrostatischen gitterpotential," Ann. Phys., Vol. 64, 253-268, 1921.
doi:10.1002/andp.19213690304
13. Jordan, K. E., G. R. Richter, and P. Sheng, "An efficient numericalevaluation of the Green’s functionfor the Helmholtzoperator on periodic structures," J. Comp. Phys., Vol. 63, 222-235, 1986.
doi:10.1016/0021-9991(86)90093-8
14. Mathis, A. W. and A. F. Peterson, "A comparisonof acceleration procedures for the two-dimensional periodic Green’s function," IEEE Trans. Antennas Propag., Vol. 44, 567-571, Apr. 1996.
doi:10.1109/8.489309
15. Tsang, L., J. A. Kong, K.-H. Ding, and C. O. Ao, Scattering of Electromagnetic Waves, Vol. 2, Numerical Simulations, Wiley-Interscience, 2001.
doi:10.1002/0471224308
16. Tan, S., Multiple volume scattering in random media and periodic structures with applications in microwave remote sensing and wave functional materials, Ph.D. Thesis, University of Michigan, https://deepblue.lib.umich.edu/handle/2027.42/137141, 2016.
17. Tsang, L. and S. Tan, "Calculations of band diagrams and low frequency dispersion relations of 2D periodic dielectric scatterers using broadband Green’s function with low wavenumber extraction (BBGFL)," Opt. Express, Vol. 24, 945-965, 2016.
doi:10.1364/OE.24.000945
18. Tan, S. and L. Tsang, "Green’s functions, including scatterers, for photonic crystals and metamaterials," J. Opt. Soc. Am. B, Vol. 34, 1450-1458, 2017.
doi:10.1364/JOSAB.34.001450
19. Johnson, S. G. and J. D. Joannopoulos, "Block-iterative frequency-domain methods for Maxwell’s equations in a planewave basis," Opt. Express, Vol. 8, 173-190, 2001.
doi:10.1364/OE.8.000173
20. Tan, S. and L. Tsang, "Scattering of waves by a half-space of periodic scatterers using broadband Green’s function," Opt. Lett., Vol. 42, 4667-4670, 2017.
doi:10.1364/OL.42.004667
21. Tan, S. and L. Tsang, "Effects of localized defects/sources in a periodic lattice using Green’s function of periodic scatterers," IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting, Boston, MA, USA, 2018.
22. Singh, S., W. F. Richards, J. R. Zinecker, and D. R. Wilton, "Accelerating the convergence of series representing the free space periodic Green’s function," IEEE Trans. Antennas Propag., Vol. 38, No. 12, 1958-1962, 1990.
doi:10.1109/8.60985
23. Ivanishin, M. M. and S. P. Skobelev, "A modification of the Kummer’s method for efficient computation of the Green’s function for doubly periodic structures," IEEE Trans. Antennas Propag., Vol. 57, No. 9, 2794-2798, 2009.
doi:10.1109/TAP.2009.2027188
24. Lifshitz, E. M., "The theory of molecular attractive forces between solids," Soviet Physics, Vol. 2, No. 1, 73-83, 1956.
25. Simpson, W. M. and U. Leonhardt, Forces of the Quantum Vacuum: An Introduction to Casimir Physics, World Scientific Publishing Company, 2015.
doi:10.1142/9383
26. Tsang, L., K. H. Ding, T. H. Liao, and S. Huang, "Modeling of scattering in arbitrary-shape waveguide using broadband Green’s function with higher order low wavenumber extractions," IEEE Transactions on Electromagnetic Compatibility, Vol. 60, No. 1, 16-25, Feb. 2018.
doi:10.1109/TEMC.2017.2727958