Vol. 164
Latest Volume
All Volumes
PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2019-01-28
Efficient Broadband Evaluations of Lattice Green's Functions via Imaginary Wavenumber Components Extractions
By
Progress In Electromagnetics Research, Vol. 164, 63-74, 2019
Abstract
A novel and systematic method is developed to evaluate periodic Green's functions on empty lattices through extractions of an imaginary wavenumber component of the lattice Green's function and its associated derivatives. We consider cases of volumetric periodicity where the dimensionality of the periodicity has the same dimensionality as the physical problem. This includes one-dimensional (1D) problem with 1D periodicity, two-dimensional (2D) problem with 2D periodicity, and three-dimensional (3D) problem with 3D periodicity, respectively. The remainder of the Green's function is put in spectral series with high-order power-law convergence rates, while the extracted imaginary wavenumber parts are put in spatial series with super-fast and close-to exponential convergence rate. The formulation is free of transcendental functions and thus simple in implementation. It is especially efficient for broadband evaluations of the Green's function as the spatial series are defined on fixed wavenumbers that take small CPU to compute, and the spectral series have simple and separable wavenumber dependences. Keeping only a few terms in both the spatial and spectral series, results of the lattice Green's function are in good agreement with benchmark solutions in 1D, 2D, and 3D, respectively, demonstrating the high accuracy and computational efficiency of the proposed method. The proposed method can be readily generalized to deal with Green's functions including arbitrary periodic scatterers.
Citation
Shurun Tan, and Leung Tsang, "Efficient Broadband Evaluations of Lattice Green's Functions via Imaginary Wavenumber Components Extractions," Progress In Electromagnetics Research, Vol. 164, 63-74, 2019.
doi:10.2528/PIER18102001
References

1. Pendry, J. B., A. J. Holden, D. J. Robbins, and W. J. Stewart, "Low frequency plasmons in thin-wire structures," J. Phys.: Condens. Matter, Vol. 10, 4785-4809, 1998.
doi:10.1088/0953-8984/10/22/007

2. Pendry, J. B., A. J. Holden, D. J. Robbins, and W. J. Stewart, "Magnetism from conductors and enhanced nonlinear phenomena," IEEE Trans. Microw. Theory Techn., Vol. 47, No. 11, 2075-2084, 1999.
doi:10.1109/22.798002

3. Smith, D. R., W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, "Composite medium with simultaneously negative permeability and permittivity," Phys. Rev. Lett., Vol. 84, No. 18, 4184-4187, 2000.
doi:10.1103/PhysRevLett.84.4184

4. Joannopoulos, J. D., S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals: Molding the Flow of Light, Princeton University Press, 2011.
doi:10.2307/j.ctvcm4gz9

5. Yang, Z., F. Gao, X. Shi, X. Lin, Z. Gao, Y. Chong, and B. Zhang, "Topological acoustics," Phys. Rev. Lett., Vol. 114, No. 11, 114301, 2015.
doi:10.1103/PhysRevLett.114.114301

6. Haldane, F. D. M., "Model for a quantum Hall effect without Landau levels: Condensed-matter realization of the ``parity anomaly''," Phys. Rev. Lett., Vol. 61, No. 18, 2015-2018, 1988.
doi:10.1103/PhysRevLett.61.2015

7. Tsang, L., K.-H. Ding, and S. Tan, "Broadband point source Green’s function in a onedimensional infinite periodic lossless medium based on BBGFL with modal method," Progress In Electromagnetics Research, Vol. 163, 51-77, 2018.
doi:10.2528/PIER18071802

8. Leung, K. M. and Y. Qiu, "Multiple-scattering calculation of the two-dimensional photonic band structure," Physical Review B, Vol. 48, No. 11, 7767-7771, 1993.
doi:10.1103/PhysRevB.48.7767

9. Tsang, L., "Broadband calculations of band diagrams in periodic structures using the broadband Green’s function with low wavenumber extraction (BBGFL)," Progress In Electromagnetics Research, Vol. 153, 57-68, 2015.
doi:10.2528/PIER15082901

10. Kohn, W. and N. Rostoker, "Solution of the Schrodinger equation in periodic lattices with an application to metallic lithium," Physical Review, Vol. 94, 1111-1120, 1954.
doi:10.1103/PhysRev.94.1111

11. Silveirinha, M. and C. A. Fernandes, "A new method with exponential convergence to evaluate the periodic Green’s function," Proc. IEEE APS/URSI Symp., Vol. 2, 805-808, Columbus, OH, Jun. 2003.

12. Ewald, P. P., "Die berechnug optischer und elekrostatischen gitterpotential," Ann. Phys., Vol. 64, 253-268, 1921.
doi:10.1002/andp.19213690304

13. Jordan, K. E., G. R. Richter, and P. Sheng, "An efficient numericalevaluation of the Green’s functionfor the Helmholtzoperator on periodic structures," J. Comp. Phys., Vol. 63, 222-235, 1986.
doi:10.1016/0021-9991(86)90093-8

14. Mathis, A. W. and A. F. Peterson, "A comparisonof acceleration procedures for the two-dimensional periodic Green’s function," IEEE Trans. Antennas Propag., Vol. 44, 567-571, Apr. 1996.
doi:10.1109/8.489309

15. Tsang, L., J. A. Kong, K.-H. Ding, and C. O. Ao, Scattering of Electromagnetic Waves, Vol. 2, Numerical Simulations, Wiley-Interscience, 2001.
doi:10.1002/0471224308

16. Tan, S., Multiple volume scattering in random media and periodic structures with applications in microwave remote sensing and wave functional materials, Ph.D. Thesis, University of Michigan, https://deepblue.lib.umich.edu/handle/2027.42/137141, 2016.

17. Tsang, L. and S. Tan, "Calculations of band diagrams and low frequency dispersion relations of 2D periodic dielectric scatterers using broadband Green’s function with low wavenumber extraction (BBGFL)," Opt. Express, Vol. 24, 945-965, 2016.
doi:10.1364/OE.24.000945

18. Tan, S. and L. Tsang, "Green’s functions, including scatterers, for photonic crystals and metamaterials," J. Opt. Soc. Am. B, Vol. 34, 1450-1458, 2017.
doi:10.1364/JOSAB.34.001450

19. Johnson, S. G. and J. D. Joannopoulos, "Block-iterative frequency-domain methods for Maxwell’s equations in a planewave basis," Opt. Express, Vol. 8, 173-190, 2001.
doi:10.1364/OE.8.000173

20. Tan, S. and L. Tsang, "Scattering of waves by a half-space of periodic scatterers using broadband Green’s function," Opt. Lett., Vol. 42, 4667-4670, 2017.
doi:10.1364/OL.42.004667

21. Tan, S. and L. Tsang, "Effects of localized defects/sources in a periodic lattice using Green’s function of periodic scatterers," IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting, Boston, MA, USA, 2018.

22. Singh, S., W. F. Richards, J. R. Zinecker, and D. R. Wilton, "Accelerating the convergence of series representing the free space periodic Green’s function," IEEE Trans. Antennas Propag., Vol. 38, No. 12, 1958-1962, 1990.
doi:10.1109/8.60985

23. Ivanishin, M. M. and S. P. Skobelev, "A modification of the Kummer’s method for efficient computation of the Green’s function for doubly periodic structures," IEEE Trans. Antennas Propag., Vol. 57, No. 9, 2794-2798, 2009.
doi:10.1109/TAP.2009.2027188

24. Lifshitz, E. M., "The theory of molecular attractive forces between solids," Soviet Physics, Vol. 2, No. 1, 73-83, 1956.

25. Simpson, W. M. and U. Leonhardt, Forces of the Quantum Vacuum: An Introduction to Casimir Physics, World Scientific Publishing Company, 2015.
doi:10.1142/9383

26. Tsang, L., K. H. Ding, T. H. Liao, and S. Huang, "Modeling of scattering in arbitrary-shape waveguide using broadband Green’s function with higher order low wavenumber extractions," IEEE Transactions on Electromagnetic Compatibility, Vol. 60, No. 1, 16-25, Feb. 2018.
doi:10.1109/TEMC.2017.2727958