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Efficient Broadband Evaluations of Lattice Green’s Functions
via Imaginary Wavenumber Components Extractions

Shurun Tan1, 2, 3, * and Leung Tsang3

Abstract—A novel and systematic method is developed to evaluate periodic Green’s functions on empty
lattices through extractions of an imaginary wavenumber component of the lattice Green’s function and
its associated derivatives. We consider cases of volumetric periodicity where the dimensionality of the
periodicity has the same dimensionality as the physical problem. This includes one-dimensional (1D)
problem with 1D periodicity, two-dimensional (2D) problem with 2D periodicity, and three-dimensional
(3D) problem with 3D periodicity, respectively. The remainder of the Green’s function is put in spectral
series with high-order power-law convergence rates, while the extracted imaginary wavenumber parts are
put in spatial series with super-fast and close-to exponential convergence rate. The formulation is free
of transcendental functions and thus simple in implementation. It is especially efficient for broadband
evaluations of the Green’s function as the spatial series are defined on fixed wavenumbers that take
small CPU to compute, and the spectral series have simple and separable wavenumber dependences.
Keeping only a few terms in both the spatial and spectral series, results of the lattice Green’s function
are in good agreement with benchmark solutions in 1D, 2D, and 3D, respectively, demonstrating the
high accuracy and computational efficiency of the proposed method. The proposed method can be
readily generalized to deal with Green’s functions including arbitrary periodic scatterers.

1. INTRODUCTION

Volumetric periodic problems are that the dimensionality of the periodicity has the same dimensionality
as the physical problem. This includes one-dimensional (1D) problem with 1D periodicity (1D1D), two-
dimensional (2D) problem with 2D periodicity (2D2D), and three-dimensional (3D) problem with 3D
periodicity (3D3D), respectively. The volumetric periodic Green’s function in an empty lattice, also
known as the lattice Green’s function, denoted by g0

P (k, ki; r, r ′), is the field response arising from
infinite periodic sources with progressive phase shift exp(iki ·R) controlled by the Bloch wave vector ki,

g0
P

(
k, ki; r, r ′) =

∑
R

g0
(
k; r, r ′ + R

)
exp

(
iki · R

)
(1)

=
∑
R

exp
(
ik

∣∣r − (
r ′ + R

)∣∣)
4π

∣∣r − (
r ′ + R

)∣∣ exp
(
iki · R

)
(2)

where R = ma1 + na2 + la3, with m, n, l being integer lattice indices and a1, a2, a3 the primary lattice
vectors. g0(k; r, r ′) is the free-space Green’s function at wavenumber k, evaluated at field location r and
source point r ′. In the equation above, the summation over

∑
R is over three dimensional (3D) lattice.
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The points r and r ′ are in 3D space. This is the case of volumetric periodic Green’s function when
the spatial dimension of the physical problem is the same as the dimension of the periodicity. In 3D,
g0(k; r, r ′) = exp(ik|r−(r ′+R)|)/(4π|r−r ′|) is the free space Green’s function. As indicated in Eq. (1),
each of the point source contributes one free-space Green’s function component g0(k; r, r ′+R) exp(iki·R)
into g0

P (k, ki; r, r ′).
The lattice Green’s function, g0

P , is of special interest to understanding multiple scattering
phenomena in periodic structures. It is used widely to formulate integral equations on infinite periodic
scatterers while reducing the integral domain to be on a single reference scatterer. Such integral
equations lead to band structures and band solutions of periodic structures. Typical periodic structures
occur in problems of electromagnetic waves, acoustic waves, and electron waves. Examples include
metamaterials [1–3], photonic crystals [4], phononic crystals [5], and atomic crystals [6], etc.

The evaluation of the lattice Green’s function g0
P is challenging, as it typically involves summing

over slowly convergent series, as indicated in Eq. (1), where the spatial series g0(k; r, r ′ + R) decays
slowly with distance. In parallel to Eq. (1), the lattice Green’s function g0

P can also be put into spectral
series making use of Poisson summation and the spectral integral representation of g0,

g0
P

(
k, ki; r, r ′) =

1
Ω

∑
K

exp
(
iK · (r − r ′)

)∣∣K∣∣2 − k2
(3)

where K = ki + G, and G = mb1 + nb2 + lb3, with m, n, l being integer reciprocal lattice indices and
b1, b2, b3 the reciprocal lattice vectors. The primary and reciprocal lattice vectors satisfy ai · bj = 2πδij ,
where δij is the Kronecker delta, and Ω = (a1×a2) ·a3 represents the unit cell size. Note that each term
in Eq. (3) represents a Floquet plane wave exp(iK ·(r−r ′)), and it is independent of the wavenumber k.
Thus the wavenumber dependence in Eq. (3) is entirely embedded in the rational factor 1/(|K |2 − k2),
which is much simpler than in g0(k; r, r ′ + R) as in the spatial series in Eq. (1). The summation in
Eq. (3) also converges slowly especially when r approaches r ′ since g0

P (k, ki; r, r ′) is singular at r = r ′.
Extensive efforts have been devoted to developing effective techniques to evaluate g0

P efficiently. For
one-dimensional problem with one-dimensional periodicity, g0

P , (1D1D), when put in spatial series, can
be readily converted into a geometric series and computed [7]. On the other hand, g0

P of two-dimensional
problem with two-dimensional periodicity (2D2D) [8, 9] and g0

P of three-dimensional problem with three-
dimensional periodicity (3D3D) [10, 11], in general, are deemed difficult. Ewald’s approach [8, 10, 11]
is frequently used to decompose the Green’s function into a spatial series and a spectral series, both
with exponential decay rate. In the Ewald summation [12–15], the decomposition is achieved through
judiciously choosing a splitting factor E in a special integral transformation, and the coefficients of
the spatial and/or the spectral series involve transcendental functions such as error functions. The
formulation of Ewald’s approach and its implementation require significant efforts. The wavenumber
dependence in Ewald’s formulation is in general complicated.

We recently developed the technique of broadband Green’s function with low wavenumber
extraction (BBGFL) [7, 9, 16–18] to represent the lattice Green’s function, and then use it to formulate
surface integral equations (SIE) and succeedingly convert the SIE into a linear eigenvalue problem that
characterizes the band diagram and the band field solution of the periodic structure. The key concept
of BBGFL is to put Eq. (3) into

g0
P

(
k, ki; r, r ′) = g0

P

(
kL, ki; r, r ′) +

k2 − k2
L

Ω

∑
K

exp
(
iK · (r − r ′)

)(∣∣K∣∣2 − k2
)(∣∣K∣∣2 − k2

L

) (4)

through subtraction of a low wavenumber component g0
P (kL, ki; r, r ′), while improving the convergence

rate of the spectral series. In Eq. (4), kL is chosen as a small (relative to k) and fixed real number
that avoids |K|, and g0

P (kL, ki; r, r ′) is computed through special techniques [7, 9, 17] such as Ewald’s
summation. The simple wavenumber dependence in Eq. (4) helps in converting the SIE, discretized
with the method of moments (MoM), into a linear eigenvalue problem for 1D [7] and 2D [9, 17] photonic
crystals, and the fast convergence rate in Eq. (4) significantly reduces the dimension of the resulting
eigenvalue problem compared to widely used plane wave expansion method [4, 19]. An overarching
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advantage of the BBGFL approach is the ability to accurately construct the band field distribution
using relatively few number of plane waves and to effectively normalize the band field distribution
without going through tedious volumetric integrals [7, 18]. Such derived band eigenvalues and eigen
field solutions are then used to derive Green’s function of the periodic structure including scatterers,
both due to periodic sources and due to point sources [7, 18]. It is noteworthy that the expansion in
the above also applies to Green’s function with scatterers. In such a case, the plane wave expansions
are replaced by the band field solutions. Low wavenumber extractions are also applied to accelerate
the convergence of the band field solutions. The Green’s function including periodic scatterers is a key
physical quantity in periodic structures and can be used to effectively deal with scattering from bounded
periodic scatterers [20] and periodic structure with localized defects [21].

The choice of a real kL in Eq. (4) renders BBGFL as dependent upon conventional g0
P techniques

that requires extra work in implementing the method, and choosing a uniform kL across the entire
Brillouin zone is barely feasible to avoid poles in the factor 1/(|K |2 − k2

L). The choice of a uniform kL

over the entire Brillouin zone avoiding band poles is deemed more important in computing the single
point source Green’s function including periodic scatterers [7, 18], while it is not always feasible to
identify a real stop band for a given structure.

In this paper, we deal with these issues by choosing an imaginary wavenumber kL in Eq. (4),

kL = iξ (5)

where ξ a real number, leading to Eq. (6), to be presented in Section 2.1. This seemingly simple
change is innovative. By choosing an imaginary kL, the spatial representation of g0

P (iξ, ki; r, r ′), as
presented in Eq. (7), becomes fast convergent because each term in the spatial summation decays
exponentially with separation at an imaginary wavenumber. An imaginary kL also successfully avoids
poles in 1/(|K |2 − k2

L) = 1/(|K |2 + ξ2) in the entire Brillouin zone. Thus, a self-consistent broadband
Green’s function technique is formed without seeking help from conventional g0

P approaches.
In this paper, we use an imaginary kL in effectively evaluating g0

P over a broadband wavenumber
k. The methodologies are illustrated for 1D1D, 2D2D and 3D3D problems, i.e., Green’s function
with volumetric periodicities. We develop a variety of imaginary wavenumber extraction techniques,
leading to high spectral convergence rate of 1/|K |4, super-high convergence rate of 1/|K |6, and hyper
convergence rate of 1/|K |8, respectively. The methodology can be readily generalized to even higher
order convergence rates of 1/|K |10, 1/|K|12, . . ., without substantial complexities. With the hyper
convergence rate formulation, we can truncate the spectral series with |m|, |n|, |l| ≤ 3, where m,n, l
are the lattice indices, to achieve a relative error less than 10−3. The spatial series can be truncated
even faster with |m|, |n|, |l| ≤ 2 with a relative error less than 10−4. In comparing with Ewald method,
the Ewald’s method provides exponentially reducing errors and is more favorable in reaching machine
accuracies. However, in physical and engineering problems, a relative accuracy of g0

P of 10−3 is in general
sufficient. The proposed method is more efficient than the Ewald approach for this sufficient level of
accuracy. It is noteworthy that the proposed acceleration technique through imaginary wavenumber
components extractions can also be explained in the general framework of the Kummer’s transformation
and the Poisson transformation, which has been adopted to accelerate the computation of 3D Green’s
function with 2D periodicities, i.e., Green’s function with surface periodicities [22, 23]. The spectral
representation of the Green’s function with surface periodicities has exponential decay rate except
when the field point approaches the plane of the periodic sources, while the Green’s function with
volumetric periodicities, in both spectral and spatial representations, converge slowly at all points.
Green’s function with surface periodicities are for applications in gratings, frequency selective surfaces,
etc. Green’s functions with volumetric periodicities, the focus of this paper, are for applications
in photonic crystals, metamaterials, photonic bandgap (PBG) materials, etc. The use of imaginary
wavenumber and imaginary frequencies are used frequently in the study of Casimir forces [24, 25].

The outline of the paper is as follows. In Section 2, we present the formulation, derive the
wavenumber derivatives for higher order convergence of the spectral series, and examine the convergence
of the spatial series at a single ξ. Numerical results of 1D, 2D and 3D problems are illustrated in
Section 3. The conclusions are summarized in Section 4.
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2. THE BROADBAND GREEN’S FUNCTION TECHNIQUE USING IMAGINARY
WAVENUMBER COMPONENTS EXTRACTIONS

2.1. General Formulation

We verify Eq. (4) by substituting Eq. (3) with k = kL into Eq. (4) and compare the resulting expression
with Eq. (3) at a general k. Now choosing kL = iξ, i.e., Eq. (5), in Eq. (4), we obtain

g0
P

(
k, ki; r, r ′) = g0

P

(
iξ, ki; r, r ′) +

ξ2 + k2

Ω

∑
K

exp
(
iK · (r − r ′)

)(∣∣K∣∣2 − k2
) (∣∣K∣∣2 + ξ2

) (6)

where g0
P (iξ, ki; r, r ′) is computed from Eq. (1) with k = iξ,

g0
P

(
iξ, ki; r, r ′) =

∑
R

g0
(
iξ; r, r ′ + R

)
exp

(
iki · R

)
(7)

Note that in Eq. (6), g0
P (iξ, ki; r, r ′) is only required at a fixed ξ, and the Floquet plane waves

exp(iK · (r − r ′)) and the Floquet plane wavevectors K are independent of the wavenumber k, leaving
the only wavenumber dependence in the rational factor (ξ2 + k2)/(|K |2 − k2). This renders Eq. (6)
suitable to be computed over a broadband of wavenumbers. Eq. (6) has a spectral convergence rate
of 1/|K4|, asymptotically, much improved than the original spectral representation of g0

P (k, ki; r, r ′) in
Eq. (3) with a spectral convergence rate of 1/|K2|. An improved convergence rate implies less Floquet
plane waves exp(iK · (r − r ′)) required in evaluating g0

P (k, ki; r, r ′). An additional advantage is that
the spectral sum in Eq. (6) is free of singularities at any combination of field points r and source
points r ′, while the spectral poles at |K| = k is an intrinsic characteristic of g0

P . On the other hand,
evaluation of g0

P (iξ, ki; r, r ′) through Eq. (7) has exponential convergence rate since g0(iξ; r, r ′ + R)
decays exponentially fast with |r − (r′ + R)| at k = iξ.

Expressions for g0
P with even higher spectral convergence rates are derived through extractions of

several wavenumber derivatives at the imaginary wavenumber [20, 26],

g0
P

(
k, ki; r, r ′) = g0

P

(
iξ, ki; r, r ′) − ξ2 + k2

2ξ
d

dξ
g0
P

(
iξ, ki; r, r ′)

+

(
ξ2 + k2

)2

Ω

∑
K

exp
(
iK · (r − r ′)

)(∣∣K∣∣2 − k2
)(∣∣K∣∣2 + ξ2

)2 (8)

and

g0
P

(
k, ki; r, r ′) = g0

P

(
iξ, ki; r, r ′) − ξ2 + k2

2ξ
d

dξ
g0
P

(
iξ, ki; r, r ′) +

(
ξ2 + k2

)2

4ξ
d

dξ

[
1
2ξ

d

dξ
g0
P

(
iξ, ki; r, r ′)]

+

(
ξ2 + k2

)3

Ω

∑
K

exp
(
iK · (r − r ′)

)(∣∣K∣∣2 − k2
) (∣∣K∣∣2 + ξ2

)3 (9)

where d
dξ etc denotes derivatives with respect to wavenumbers. The imaginary wave number components

at k = iξ are computed through spatial series,

d

dξ

[
1
ξ

d

dξ
g0
P

(
iξ, ki; r, r ′)] = − 1

ξ2

d

dξ
g0
P

(
iξ, ki; r, r ′) +

1
ξ

d2

dξ2
g0
P

(
iξ, ki; r, r ′) (10)

d

dξ
g0
P

(
iξ, ki; r, r ′) =

∑
R

d

dξ
g0

(
iξ; r, r ′ + R

)
exp

(
iki · R

)
(11)

d2

dξ2
g0
P

(
iξ, ki; r, r ′) =

∑
R

d2

dξ2
g0

(
iξ; r, r ′ + R

)
exp

(
iki · R

)
(12)
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One can readily verify Eqs. (6), (8), (9) by substituting

g0
P

(
iξ, ki; r, r ′) =

1
Ω

∑
K

exp
(
iK · (r − r ′)

)∣∣K∣∣2 + ξ2
(13)

into each of them and comparing the resulting expressions with Eq. (3), where Eq. (13) is obtained from
Eq. (3) with k = iξ.

We note that Eq. (8) and Eq. (9) share the same advantage as Eq. (6), while they enjoy a super-
high spectral convergence rate of 1/|K |6, and a hyper convergence rate of 1/|K |8, respectively. The
number of required Floquet plane waves decreases sharply as we improve the convergence rate of spectral
summations. Eqs. (6), (8) and (9) share the same form for lattice Green’s function g0

P of 1D, 2D, and
3D problems, with an equal dimensionality of periodicities, respectively. It is also noteworthy that in
Eqs. (6), (8) and (9) the singularity is only in the first term on the right-hand-side, in g0

P (iξ, ki; r, r ′)
through Eq. (7) where only a single spatial term g0(iξ; r, r ′ + R) is singular when r approaches r′ + R.
Thus, well-developed routines to handle singularities of the free-space Green’s function g0(iξ; r, r ′) can
be directly applied to deal with singularities of g0

P (k, ki; r, r ′) in integral equations.

2.2. The Free-Space Green’s Function and Its Derivatives

In Eqs. (6), (8), (9), we encounter g0
P (iξ, ki; r, r ′), d

dξg0
P (iξ, ki; r, r ′), and d2

dξ2 g0
P (iξ, ki; r, r ′), which then

relates to g0(iξ; r, r ′), d
dξg0(iξ; r, r ′), and d2

dξ2 g0(iξ; r, r ′), through Eqs. (7), (11), (12), respectively. In

this section, we provide the expressions of g0(iξ; r, r ′), d
dξg0(iξ; r, r ′), and d2

dξ2 g0(iξ; r, r ′), for 1D, 2D,
and 3D problems.

2.2.1. 1D Free-Space Green’s Function and Its Derivatives

Since
g0

(
k;x, x′) =

i

2k
exp

(
ik

∣∣x − x′∣∣) (14)

we have

g0
(
iξ;x, x′) =

1
2ξ

exp
(−ξ

∣∣x − x′∣∣) (15)

d

dξ
g0

(
iξ;x, x′) = −

(
1
ξ

+
∣∣x − x′∣∣) g0

(
iξ;x, x′) (16)

d2

dξ2
g0

(
iξ;x, x′) =

[
1
ξ2

+
(

1
ξ

+
∣∣x − x′∣∣)2

]
g0

(
iξ;x, x′) (17)

Note that there is an exponential decay exp(−ξ|x−x′|) associated with the imaginary wavenumber.
The decay increases sharply with distance between the source and the observation point. Thus, the
spatial summation converges fast because the lattice point sources have increasing distances from the
observation point.

2.2.2. 2D Free-Space Green’s Function and Its Derivatives

Since
g0

(
k; ρ, ρ ′) =

i

4
H

(1)
0

(
k

∣∣ρ − ρ ′∣∣) (18)

we have

g0
(
iξ; ρ, ρ ′) =

i

4
H

(1)
0

(
iξ

∣∣ρ − ρ ′∣∣) (19)

d

dξ
g0

(
iξ; ρ, ρ ′) =

1
4

∣∣ρ − ρ ′∣∣ H
(1)
1

(
iξ

∣∣ρ − ρ ′∣∣) (20)
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d2

dξ2
g0

(
iξ; ρ, ρ ′) =

∣∣ρ − ρ′
∣∣2 g0

(
iξ; ρ, ρ ′) − 1

ξ

d

dξ
g0

(
iξ; ρ, ρ ′) (21)

where H
(1)
0 (·) and H

(1)
1 (·) represent the first kind Hankel function of zeroth and first orders, respectively.

2.2.3. 3D Free-Space Green’s Function and Its Derivatives

Since

g0
(
k; r, r ′) =

exp (ik |r − r ′|)
4π |r − r ′| (22)

we have, at an imaginary wavenumber,

g0
(
iξ; r, r ′) =

exp (−ξ |r − r ′|)
4π |r − r ′|

then the spatial summation

g0
P

(
iξ, ki; r, r ′) =

∑
R

exp
(−ξ

∣∣r − (
r ′ + R

)∣∣)
4π

∣∣r − (
r ′ + R

)∣∣ exp
(
iki · R

)
(23)

The convergence is fast as R increases with lattice points and the decay with distance at an imaginary
wavenumber is exponential. On the other hand, the convergence is poor at a real wavenumber kL.

Higher order derivatives are

d

dξ
g0

(
iξ; r, r ′) = − ∣∣r − r ′∣∣ g0

(
iξ; r, r ′) (24)

d2

dξ2
g0

(
iξ; r, r ′) =

∣∣r − r ′∣∣2 g0
(
iξ; r, r ′) (25)

2.3. Error Analysis: Truncating the Spectral and Spatial Series

We examine the criteria to truncate the spectral and spatial series in the hyper convergent formulation,
i.e., Eq. (9). These criteria are established to ensure certain level of numerical accuracies in computing
g0
P . It is clear from the following analysis that choosing a larger imaginary wavenumber ξ favors a faster

converging spatial series while it slightly decreases the convergence rate of the spatial series. Thus, the
choice of ξ is made to balance the number of terms in the spatial and spectral series. In the following
analysis, we choose ξ = 2π

a , which successfully truncates both series at N = 2 or 3 while achieving high
accuracy. Varying ξ slightly around 2π

a does not alter the performance significantly.

2.3.1. The Spectral Series

The term of interest is ∑
K

exp
(
iK · (r − r ′)

)(∣∣K∣∣2 − k2
)(∣∣K∣∣2 + ξ2

)3

Let k = fn
2π
a , where a is the lattice constant and fn the normalized frequency (or wavenumber),

and we assume that fn ≤ 1 for k of interest, i.e., the lattice constant is equal to or less than the
wavenumber. We choose ξ = 2π

a , and let, for a particular K = ki + G, K = |K| = η 2π
a . Using these

definitions, we consider the series at r = r ′, with worst convergence issues,∑
η

1
(η2 − f2

n) (η2 + 1)3
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For terms of K with η � 1 ≥ fn, this asymptotically reduces to
∑

η
1
η8 with η approaching integers.

Without significantly changing its convergence properties, we examine the integer series,∑
n

1
n(8−Dim+1)

where Dim = 1, 2, 3, respectively, for 1D, 2D, and 3D problems. The decreasing of the exponent of
n as we raise the dimensionality of the problem is due to the increasing occurrences of terms with
similar amplitudes, i.e., the summation

∑
η is over a single, double and triple indices for 1D, 2D and

3D problems, respectively.
Straightforward evaluations show that, to reach a relative error less than 10−3, we need |n| ≤ N ,

with (2N + 1)Dim terms in the spectral series,

N = 2, for 1D, 2N + 1 = 5
N = 2, for 2D, (2N + 1)2 = 25

N = 3, for 3D, (2N + 1)3 = 343

Note that the required number of terms are similar to those required in Ewald summations. However,
Ewald summation involves complicated special functions (error functions), and is more computationally
expensive than the proposed approach. In solving integral equations with g0

P , the matrix elements
involve integrations of g0

P over a particular region, which in general enjoy better accuracy than g0
P due

to phase cancelations.

2.3.2. The Spatial Series

We note from Section 2.2 that

g0,
d

dξ
g0,

d2

dξ2
g0

(
iξ; r, r ′) ∝ ∣∣r − r ′∣∣α exp

(−ξ
∣∣r − r ′∣∣)

with α ≤ 2, 1.5, and 1, for 1D, 2D, and 3D problems, respectively. Thus, all these terms have close to
exponential decay rates with respect to the distance |r − r ′|. Thus, the terms of the spatial series, as
illustrated in Eqs. (7), (11), (12), share the form, asymptotically,∣∣r − r ′ − R

∣∣α exp
(−ξ

∣∣r − r ′ − R
∣∣) exp

(
iki · R

)
.

Choosing ξ = 2π
a and letting |r − r ′ − R| = ζa, this becomes

ζαaα exp (−2πζ) exp
(
iki · R

)
We eliminate the phase factor and consider the convergence rate of an integer series,∑

n

nα+(Dim−1) exp (−2πn)

where the factor nDim−1 again arises from the increasing dimension of summation indices and Dim =
1, 2, 3 represents the dimensionality of periodicity, for 1D, 2D, and 3D problems, respectively. Truncating
the summation with |n| ≤ N leads to (2N + 1)Dim terms in the series.

Simple calculations show that truncating the series with N = 2 leads to relative error less than
10−4, and truncating with N = 3 leads to relative error less than 10−6. Thus N = 2 is in general
accurate enough in truncating the spatial series.

2.4. Bloch Condition of g0
P

g0
P satisfies the Bloch wave conditions,

g0
P

(
k, ki; r + R, r ′) = g0

P

(
k, ki; r, r ′) exp

(
iki · R

)
(26)

thus for arbitrary r and r′, we can find a vector r0, with its length r0 = |r0| ≤ a
2 , through

r − r ′ = r0 + R
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then
g0
P

(
k, ki; r − r ′) = g0

P

(
k, ki; r0

)
exp

(
iki · R

)
(27)

We thus compute g0
P (k, ki; r0) with Eqs. (6), (8), (9), and then obtain g0

P (k, ki; r− r ′) through Eq. (27)
applying the multiplicative phase factor exp(iki·R). It is much more regularized to compute g0

P (iξ, ki; r0)
than computing g0

P (iξ, ki; r − r ′) using the spatial series.

3. NUMERICAL RESULTS AND DISCUSSIONS

In this section, we apply the proposed formulation of Eq. (9) to 1D, 2D, and 3D problems with volumetric
periodicity. We illustrate its high efficiency and accuracy through comparisons with benchmark solutions
in [7, 9, 17], and [11], for 1D, 2D, and 3D problems, respectively.

In all the numerical examples to be reported, we choose ξ = 2π/a, with a being the lattice constant.
We uniformly truncate the spatial series up to Nspa = 2, and we truncate the spectral series up to
Nspe = 2, 2, 3, for 1D, 2D, and 3D problems, respectively. We define k = fn

2π
a with fn being the

normalized wavenumber (or frequency). We use “BBGFL” in the figure illustrations to denote the
proposed method.

0 0.2 0.4 0.6 0.8 1
k (2 /a)

10-8

10-7

10-6

10-5

10-4

10-3

re
l. 

er
r.

 in
 g

P0

-0.5 0 0.5
x - x' (a)

2

3

4

5

6

7
8
9

re
l. 

er
r.

 in
 g

P0

10-6

0 0.2 0.4 0.6 0.8 1
k (2 /a)

10-2

10-1

100

101

102

|g
P0
|

benchmark
BBGFL

-0.5 0 0.5
x - x' (a)

0.75

0.8

0.85

0.9

|g
P0
|

benchmark
BBGFL

(a) (b)

(c) (d)

Figure 1. g0
P of 1D problem with 1D periodicity. The benchmark solutions are computed according

to [7]. “BBGFL” represents the proposed method following Eq. (9). (a) g0
P vs. x− x′, fn = 0.2, (b) g0

P
vs. k, x − x′ = 0.2a, (c) relative error vs. x − x′, fn = 0.2, (d) relative error vs. k, x − x′ = 0.2a.
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3.1. 1D Problem with 1D Periodicity

Let ki = β 2π
a and β = 0.1. In Fig. 1(a) and Fig. 1(c), we plot g0

P (k, ki;x, x′) and its relative error as a
function of the separation x−x′, respectively, where we have chosen fn = 0.2, and −a/2 < x−x′ < a/2.
In Fig. 1(b) and Fig. 1(d), we plot g0

P (k, ki;x, x′) and its relative error as a function of the wavenumber
k, respectively, where we have chosen x − x′ = 0.2a, and 0 ≤ fn ≤ 1.

3.2. 2D Problem with 2D Periodicity

We use a square lattice to illustrate results with primary lattice vectors a1 = ax̂, a2 = aŷ, and reciprocal
lattice vectors b1 = 2π

a x̂, b2 = 2π
a ŷ. Let ki = β1b1 + β2b2, and β1 = 0.1, β2 = 0. In Fig. 2(a) and

Fig. 2(c), we plot g0
P (k, ki; ρ, ρ ′) and its relative error as a function of ρ − ρ ′, respectively, where we

have chosen fn = 0.2, ρ − ρ ′ = (x − x′)x̂ and −a/2 < x − x′ < a/2. In Fig. 2(b) and Fig. 2(d), we
plot g0

P (k, ki; ρ, ρ ′) and its relative error as a function of the wavenumber k, respectively, where we have
chosen ρ − ρ ′ = 0.2ax̂ and 0 ≤ fn ≤ 1.
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Figure 2. g0
P of 2D problem with 2D periodicity. The benchmark solutions are computed according

to [9, 17]. “BBGFL” represents the proposed method following Eq. (9). (a) g0
P vs. x− x′, fn = 0.2, (b)

g0
P vs. k, x − x′ = 0.2a, (c) relative error vs. x − x′, fn = 0.2, (d) relative error vs. k, x − x′ = 0.2a.
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3.3. 3D Problem with 3D Periodicity

We use a cubic lattice to illustrate results with primary lattice vectors a1 = ax̂, a2 = aŷ, a3 = aẑ and
reciprocal lattice vectors b1 = 2π

a x̂, b2 = 2π
a ŷ, b3 = 2π

a ẑ. Let ki = β1b1 + β2b2 + β3b3, and β1 = 0.1,
β2 = 0, β3 = 0. In Fig. 3(a) and Fig. 3(c), we plot g0

P (k, ki; r, r ′) and its relative error as a function of
r − r ′, respectively, where we have chosen fn = 0.2, r − r ′ = (x − x′)x̂ and −a/2 < x − x′ < a/2. In
Fig. 3(b) and Fig. 3(d), we plot g0

P (k, ki; r, r ′) and its relative error as a function of the wavenumber k,
respectively, where we have chosen r − r ′ = 0.2ax̂ and 0 ≤ fn ≤ 1.
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Figure 3. g0
P of 3D problem with 3D periodicity. The benchmark solutions are computed according

to [11]. “BBGFL” represents the proposed method following Eq. (9). (a) g0
P vs. x − x′, fn = 0.2, (b)

g0
P vs. k, x − x′ = 0.2a, (c) relative error vs. x − x′, fn = 0.2, (d) relative error vs. k, x − x′ = 0.2a.

The numerical examples have demonstrated high accuracy and efficiency of the proposed method
for a broadband wavenumber k and for arbitrary field point/source point separations r − r ′. Using
the formulation with hyper spectral convergence rate of |K|−8, we readily obtain relative errors less
than 10−3 by truncating the spatial series at NSpa = 2 for all problem dimensions, and truncating the
spectral series at NSpe = 2, 2, 3, for 1D, 2D, and 3D problems, respectively. The results have proved
the effectiveness of the error analysis. These criteria are similar to those used in Eward’s method
truncating the spatial and spectral series. The demonstrated relative errors peak at several points when
g0
P → 0 which exacerbates the relative errors. Further tests show that the small absolute error uniformly

increases with k. Increasing NSpe by 1 reduces the error but not significantly, and it does not change
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the overall pattern of the relative error versus k. Developing formulations with even higher spectral
convergence rate is possible and straightforward to further reduce numerical errors and can be more
efficient than increasing NSpe significantly.

4. CONCLUSIONS

A self-consistent and widely applicable technique is developed to efficiently evaluate the lattice Green’s
function over a broadband wavenumber with high accuracy through extractions of several imaginary
wavenumber components. The extracted components, being effectively evaluated in spatial series at a
fixed imaginary wavenumber, have removed the singularity, avoided unnecessary poles, and substantially
improved the convergence rate of the remaining spectral series. Unlike conventional techniques that
must be developed separately case by case for different dimensionalities invoking special integral
transformations, the proposed technique is easy to implement, and it generally applies to lattice Green’s
functions in 1D1D, 2D2D, and 3D3D problems. Expressions of the scalar lattice Green’s function with
high spectral convergence rate of K−4, K−6, and K−8 are derived and examined, readily extensible to
even higher orders. The K−8 formulation readily achieves relative errors less than 10−3 by truncating
the spectral series up to N = 2 or 3. A high convergence rate is not only desired to reduce the number
of Floquet plane waves or band field solutions that must be included to accurately compute the Green’s
function, but also necessary to evaluate the dyadic Green’s function which is in general associated with
a lower convergence rate than its scalar counterpart. The proposed method can be readily generalized to
deal with Green’s functions including arbitrary periodic scatterers, both arising from periodic sources
with a progressive phase shift and from a single point source. There are physical reasons why an
imaginary low wavenumber extraction works better than a real low wavenumber extraction. In the real
low wavenumber extraction, the extraction accounts for 1/r dependence for the near field. However,
the 1/r dependence extends to long distances and becomes inconvenient for far field. For the imaginary
low wavenumber extraction, one has exp(−ξr)/r dependence. Because ξ is not large, for near field the
extraction is just 1/r as in the real low wavenumber extraction. However, for far field the extraction
decays exponentially and vanishes. The proposed method achieves uniform convergence in both the
spatial and the spectral series for all field/source points of the lattice Green’s function. In this paper,
we study imaginary wavenumber extractions for periodic Green’s function in empty lattice. We are
presently applying the imaginary wavenumber extractions to Green’s functions, including the effects of
scatterers, in volumetric periodic problems. The method can also be generalized to deal with cases where
the dimensionality of periodicity is less than the space dimensionality, well representative of gratings and
metasurfaces. In this reduced dimensionality of periodicity scenario, e.g., 2D1D, and 3D2D problems,
evaluation of the lattice Green’s function when both field points and source points are on the same
plane parallel to the lattice vectors poses challenges and difficulties to conventional Green’s function
techniques. Extensions of the proposed imaginary wavenumber extraction technique for these problems
are also being studied.
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