Vol. 81
Latest Volume
All Volumes
PIERB 109 [2024] PIERB 108 [2024] PIERB 107 [2024] PIERB 106 [2024] PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2018-06-26
Solutions of Eddy-Current Problems in a Finite Length Cylinder by Separation of Variables
By
Progress In Electromagnetics Research B, Vol. 81, 81-100, 2018
Abstract
Magnetic field and eddy currents in a cylinder of finite length are calculated by separation of variables. The magnetic field outside the cylinder or inside the bore of the hollow cylinder and shell is expressed in terms of Bessel functions. Both axial and transverse applied fields are considered for the solid and hollow cylinders. The equations for the vector potential components are transformed in one-dimensional equations along the radial coordinate with the consequent integration by the method of variation of parameters. The equation for the scalar electric potential when required is also integrated analytically. Expressions for the magnetic moment and loss are derived. An alternative analytical solution in terms of scalar magnetic potential is derived for the finite length thin shells. All formulas are validated by the comparison with the solutions by finite-element and finite-difference methods.
Citation
Yuriy Zhilichev, "Solutions of Eddy-Current Problems in a Finite Length Cylinder by Separation of Variables," Progress In Electromagnetics Research B, Vol. 81, 81-100, 2018.
doi:10.2528/PIERB18042704
References

1. Lameraner, J. and M. Stafl, Eddy Currents, Iliffe Books London, Ltd., 1966.

2. Knoepfel, H. E., Magnetic Fields, John Wiley & Sons, Inc, New York-Toronto, 2000.
doi:10.1002/9783527617418

3. Batygin, V. V. and I. N. Toptygin, Problems in Electrodynamics, problems 368 and 371, Academic, London, U.K., 1976.

4. Grimberg, R., E. Radu, O. Mihalache, and A. Savin, "Calculation of the induced electromagnetic field created by an arbitrary current distribution located outside a conductive cylinder," J. Phys. D: Appl. Phys., Vol. 30, 2285-2291, 1997.
doi:10.1088/0022-3727/30/16/005

5. Brandt, E. H., "Superconductor disks and cylinders in an axial magnetic field. I. Flux penetration and magnetization curves," Phys. Rev. B, Vol. 58, No. 10, 6506-6522, 1998.
doi:10.1103/PhysRevB.58.6506

6. Lopez, H. S., M. Poole, and S. Crozier, "Eddy current simulation in thick cylinders of finite length induced by coils of arbitrary geometry," Journal of Magnetic Resonance, Vol. 207, 251- 261, 2010.
doi:10.1016/j.jmr.2010.09.002

7. Bowler, J. R. and T. P. Theodoulidis, "Eddy currents induced in a conducting rod of finite length by a coaxial encircling coil," J. Phys. D: Appl. Phys., Vol. 38, 2861-2868, 2005.
doi:10.1088/0022-3727/38/16/019

8. Perry, M. and T. Jones, "Eddy current induction in a solid conducting cylinder with a transverse magnetic field," IEEE Trans. on Magn., Vol. 14, No. 4, 227-231, 1978.
doi:10.1109/TMAG.1978.1059755

9. Fawzi, T. H., K. F. Ali, and P. E. Burke, "Eddy current losses in finite length conducting cylinders," IEEE Trans. on Magn., Vol. 19, No. 5, 2216-2218, 1983.
doi:10.1109/TMAG.1983.1062759

10. Morisue, T. and M. Fukumi, "3-D eddy current calculation using the magnetic vector potential," IEEE Trans. on Magn., Vol. 24, No. 1, 106-109, 1988.
doi:10.1109/20.43867

11. Huang, Q. S., L. Krahenbuhl, and A. Nicolas, "Numerical calculation of steady-state skin effect problems in axisymmetry," EEE Trans. on Magn., Vol. 24, No. 1, 201-204, 1988.
doi:10.1109/20.43888

12. Turner, L. R., et al. "Results from the FELIX experiments on electromagnetic effects of hollow cylinders," IEEE Trans. on Magn., Vol. 21, No. 6, 2324-2328, 1985.
doi:10.1109/TMAG.1985.1064176

13. International Electromagnetic Workshops: Test Problems, Apr. 1986, available online: https://www.osti.gov/scitech/servlets/purl/7179128.

14. Grinberg, G. A., The Selected Problems of Mathematical Theory of Electric and Magnetic Phenomena, Acad. Sci. USSR, 1948.

15. Opera 2D, User Guide and Opera 3D, User Guide, Cobham Technical Services, Vector Fields Software, Kidlington, UK, Mar. 2016.

16. Tamm, I. E., Fundamentals of the Theory of Electricity, MIR Publishers, 1979.

17. Samarskiy, A. A., Theory of Finite Difference Schemes, Nauka, 1977.

18. Zhilichev, Y., "Superconducting cylinder of finite length in transverse magnetic field," Latvian Journal of Physics and Technical Sciences, Vol. 5, 14-21, 2001.

19. Ancelle, B., A. Nicolas, and J. C. Sabonnadiere, "A boundary integral equation method for high frequency eddy currents," IEEE Trans. on Magn., Vol. 17, No. 6, 2568-2570, 1981.
doi:10.1109/TMAG.1981.1061518

20. Poltz, J. and K. Romanowski, "Solution of quasi-stationary fields problems by means of magnetic scalar potential," IEEE Trans. on Magn., Vol. 19, No. 6, 2425-2428, 1983.
doi:10.1109/TMAG.1983.1062878