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Solutions of Eddy-Current Problems in a Finite Length Cylinder

by Separation of Variables

Yuriy Zhilichev*

Abstract—Magnetic field and eddy currents in a cylinder of finite length are calculated by separation
of variables. The magnetic field outside the cylinder or inside the bore of the hollow cylinder and shell
is expressed in terms of Bessel functions. Both axial and transverse applied fields are considered for
the solid and hollow cylinders. The equations for the vector potential components are transformed in
one-dimensional equations along the radial coordinate with the consequent integration by the method of
variation of parameters. The equation for the scalar electric potential when required is also integrated
analytically. Expressions for the magnetic moment and loss are derived. An alternative analytical
solution in terms of scalar magnetic potential is derived for the finite length thin shells. All formulas
are validated by the comparison with the solutions by finite-element and finite-difference methods.

1. INTRODUCTION

The paper presents an analytical method of calculation of steady-state magnetic fields and eddy-currents
in the cylinder of a finite length placed in the external axial or transverse magnetic field. It is known
that for the infinitely long cylinder closed form solutions were known in different forms [1–4]. However
as pointed out by many authors [1, 2, 5, 6], for the finite length cylinder the general analytical solution
had not been available. For axial symmetry the distribution of eddy currents induced in a conducting
rod of finite length by a coaxial coil is given in [7]. In general, the problem of a finite length cylinder
earlier was solved by different numerical methods, and the solution was reported by several authors [6, 8–
11]. The conductive cylinder in transverse field was also included in so-called FELIX test problems in
80-ties [12, 13] to verify the FEA codes. The analysis of eddy-currents in the cylinder is of interest
for many practical applications such as electromagnetic shielding, designs of MRI/NMR components,
conductive components of accelerator magnets, fusion reactors, magnetometers, turbogenerators and
other electrical machines. The main aim of this paper is to derive a general analytical solution in terms
of Bessel functions for eddy currents induced in a conductive cylinder by the quasi-static electromagnetic
field. The solution can be used for the fast estimation of magnetic moment, dissipated power, shielding
efficiency in structures with conductive circular cylinders. It can also be used as a benchmark when
testing codes for calculations of eddy-currents.

2. FORMULATION OF THE PROBLEM

We consider a conductive non-magnetic cylinder with constant electrical conductivity σ and magnetic
permeability μ placed in the applied magnetic field oscillating with constant frequency ω. The vector
magnetic potential A satisfies Ampere’s equation

rotrot �A = μ0
�j, (1)
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where μ0 is the magnetic permeability of free space, j the current density for the area r = [0, r0],
φ = [0, 2π], z = [−z0, z0] and zero outside this region.

The boundary condition at infinity
�A(∞) = �A0, (2)

where A0 is the vector potential of applied magnetic field.
From Ohm’s law, we can express the current density in terms of the vector and scalar V potentials

of electromagnetic field as:

�j = −σ
∂ �A

∂t
− σ∇V, (3)

where σ is the electrical conductivity of cylinder. The induced currents form the closed loops, and
therefore the current density satisfies the condition for the solenoidal field

div�j = 0. (4)

The vector potential allows us to apply an additional gauging condition so that the field can be
determined uniquely from the Maxwell equations. If we apply Coulomb gauge (div �A = 0) Equations (1)
and (4) become

∇2 �A = −μ0
�j, (5)

∇2V = 0 (6)

with the coupled boundary conditions
∂V

∂n |Γ
= −∂ �A

∂t
�n. (7)

Equation (7) provides a zero component of eddy-currents normal to the surface Γ of the conducive
cylinder. The scalar potential is defined to be zero outside the conductor. After substituting Eq. (3) in
Eq. (5), we have a system of four differential equations that are coupled. To decouple the equations we
can apply Lorentz type of gauge for the vector potential. If we select

div �A = −μ0σV, (8)

then Eqs. (1), (4) become

∇2 �A = μ0σ
∂ �A

∂t
, (9)

∇2V = −div
∂ �A

∂t
. (10)

However, outside the cylinder the electrical conductivity σ is zero, and Eq. (8) becomes the Coulomb
gauge. Since different gauges are inside and outside the cylinder, we have to satisfy the conditions of
continuity for the tangential components of field and normal components of flux density at the cylinder
boundaries. Then the components of vector and scalar potentials become coupled again. Therefore, the
Lorentz gauge does not help in this case to simplify the problem.

In orthogonal system of coordinates, Equations (9) and (10) can be solved by the method of
separation of variables when the boundary Γ coincides with the pieces of coordinates surfaces. A
conductive cylinder falls in this category of geometries. However, we have not found in literature the
complete analytical solution for the eddy-current problem when the field is applied orthogonal to the
cylinder axis. The major obstacle probably is in writing the analytical solution of the field in the whole
space outside and inside the cylinder without subdividing the space in sub-regions. However in case of
linear conductors, there are no rapid changes of the flux density or field on its boundaries at least for
moderate frequencies. Therefore, the vector potential of magnetic field can be sought as a continuous
smooth function in the whole space having piecewise conductive properties. The only problem seems
to appear for the electric scalar potential that has to be coupled accurately with the vector magnetic
potential on the boundaries of the conductor.
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3. CYLINDER IN AXIAL FIELD

When cylinder is placed in the axial magnetic field (Fig. 1), the problem can be significantly simplified.
Only one component of vector potential is enough to formulate the problem. The scalar electric potential
is not needed in this case. The complex azimuthal component of vector potential Aφ exp(iωt) inside
and outside the cylinder satisfies the equation

∂2Aφ

∂r2
+

1
r

∂Aφ

∂r
− Aφ

r2
+

∂2Aφ

∂z2
= −μ0jφ, (11)

and the far field boundary condition
Aφ(∞) = B0r/2, (12)

where B0 is the amplitude of applied field. The vector potential of uniform field in the form of Eq. (12)
can be found by integrating the equation rot �A = �B [1, 5].

Figure 1. Conductive cylinder of radius r0 and length 2z0 in uniform axial field B0 directed in z-axis.

The current density in Eq. (11) can be expressed in terms of the time derivative of vector potential
jφ = −iωσAφ. (13)

Since the magnetic permeability is the same through the whole space, we can express the solution in
the form of Fourier series accounting for the field symmetry as

Aφ =
∑
m=1

Am(r) cosλmz, (14)

where λm = π(2m− 1)/(2z∞); z∞ is the axial coordinate where the field satisfies the far-field boundary
condition in Eq. (12).

In accordance with Grinberg method [14] after substituting Eq. (14) in Eq. (11) and integrating
over the interval [0, z∞] with the weight (2/z∞) cos λmz, we have

∂2Am

∂r2
+

1
r

∂Am

∂r
− Am

r2
− λ2

mAm = −μ0jm, (15)

where
jm = −iσω

∑
l

dmlAl, (16)

dml =
2

z∞

z0∫
0

cos λmz cos λlzdz =
1

z∞

(
sin(λm − λl)z0

λm − λl
+

sin(λm + λl)z0

λm + λl

)
. (17)
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Using a method of variable parameters homogeneous equation and a particular solution of Eq. (15)

Am(r) =
B0rdm0

2
+ CmJ1(iλmr) + DmH1

1 (iλmr) − μ0π

2i
J1(iλmr)

r0∫
r

jm(r′)H1
1 (iλmr′)r′dr′

−μ0π

2i
H1

1 (iλmr)

r∫
0

jm(r′)J1(iλmr′)r′dr′,m ≥ 1, (18)

where

dm0 =
2

z∞

z∞∫
0

cos λmzdz =
2

λmz∞
(−1)m+1, (19)

J1 and H1
1 are Bessel and Hankel functions, respectively, and Cm and Dm are the constants. To keep

the potential finite at r = 0, we have to eliminate the functions that have singularities on the cylinder
axis. This is achieved by zeroing Dm = 0 in Eq. (18). To satisfy the boundary condition in Eq. (12), we
have to assume Cm = 0 as well. Then, after replacing the functions of complex argument in Eq. (18)
by the modified Bessel functions, we rewrite equations for harmonics of vector potential as:

Am(r) =
B0rdm0

2
+ μ0I1(λmr)

r0∫
r

jm(r′)K1(λmr′)r′dr′ + μ0K1(λmr)

r∫
0

jm(r′)I1(λmr′)r′dr′,

m = 1, . . . ,M. (20)

After substituting jm in Eq. (20) by Eq. (16) and approximating the integrals by the high-accuracy
quadrature on the regular grid rn = rn−1+hrn, n = 1, N in the interval [0, r0], one can derive a system
of linear equations for the potential harmonics, xk = Am(rn), k = n + (m − 1)N :∑

k′
ckk′xk′ = fk, (21)

where

ckk′ = δkk′ + iμ0σωhrn′rn′wnwn′dmm′

{
I1(λmrn′)K1(λmrn), n ≥ n′

I1(λmrn)K1(λmrn′), n ≤ n′

}

fk =
1
2
B0rndm0,

(22)

wn are the quadrature weights; hr is the grid size over the radial coordinate; δkk′ is the Kronecker delta.
Formulas for harmonics of vector potential in Eq. (20) can be easily modified for the hollow cylinder

with the inner radius ri. The only change required in Eq. (20) (that is now valid for r ≥ ri) is the
replacement of zero by ri as a lower limit in all integrals over the radial coordinate. For hollow cylinders,
it is of practical interest to calculate the field on the axis. The vector potential inside the bore 0 ≤ r ≤ ri

Am(r) =
B0rdm0

2
+ μ0I1(λmr)

r0∫
ri

jm(r′)K1(λmr′)r′dr′. (23)

The expression for the axial component can be derived as

Bz =
M∑

m=1

Bm(0) cos λmz, (24)

where coefficients Bm

Bm(0) = B0dm0 − iμ0σωλm

r0∫
ri

K1(λmr)
M∑
l=1

dmlAl(r)rdr, (25)
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or after approximation the integral by the quadrature

Bm(0) = B0dm0 − iμ0σωλm

N∑
n=1

K1(λmrn)rnwnhrn

M∑
l=1

dmlAl(rn), r1 = ri, rN = r0, (26)

For the field outside the cylinder, the harmonics of potential are calculated in terms of harmonics on
the grid within the cylinder as:

Am(r > r0) =
B0rdm0

2
− iμ0σωK1(λmr)

N∑
n=1

I1(λmrn)rnhrnwn

M∑
l=1

dmlAl(rn). (27)

The radial component of flux density outside the cylinder

Br(r > r0) =
M∑

m=1

Bm(r > r0) sin λmz, (28)

where

Bm(r > r0) = −iμ0σωλmK1(λmr)
N∑

n=1

I1(λmrn)rnhrnwn

M∑
l=1

dmlAl(rn). (29)

The field inside has a similar structure, but the modified Bessel functions of the first and second kind
in Eq. (29) are swapped. The axial component of flux density can be derived as well. In general, it will
include K1(λmr) and its derivative over the radial coordinate outside the cylinder and I1(λmr) and its
derivative inside the cylinder if being hollow.

For the thin cylindrical shells, the number of steps over the radial coordinates can be significantly
reduced. For just one step the set of Equation (21) degrades to the system of equations for the potential
harmonics at the same radial coordinate.

The far-field boundary in Eq. (2) is applied at zinf that is typically selected in the range of 5z0 or
higher. To reduce the oscillations in the solution, Lanczos smoothing is applied in all series over the
axial coordinate.

The total current induced in the cylinder is

Itotal = 2

r0∫
ri

z0∫
0

jφdzdr = − 2iσω
N∑

n=1

M∑
m=1

wndrn

λm
Am(rn) sin λmz0. (30)

The moment of the induced currents is calculated as

Mz = 4π

r0∫
ri

z0∫
0

jφr2dzdr = − 2πiσω

N∑
n=1

M∑
m=1

wnr2
n

λm
hrnAm(rn) sin λmz0. (31)

The power dissipated in the cylinder is

P =
2π
σ

r0∫
ri

z0∫
0

jφj∗φrdzdr =
πz∞
σ

N∑
n=1

M∑
m=1

M∑
l=1

dmljmj∗l wnrnhrn. (32)

Formulas for the field components, moment and power loss have been validated by the comparison
with the results from FEA code [15]. The solid and hollow copper cylinders of radius 1 cm and various
lengths have been considered. The results of comparison are presented in Fig. 2–Fig. 6. The number of
harmonics M in these numerical tests is typically in the range between 20 and 30, and the number of
steps in radial grid, N , is between 20 and 30 as well. The step Δrn depends on the frequency, and it is
selected based on the skin depth.
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Figure 2. Current density across the cylinder of r0 = 1cm, z0 = 1cm at f = 300 Hz, B0 = 10 mT: solid
line = realj, analytical, dash line = imaginaryj, analytical; ◦ = realj, FEA, � = imaginaryj, FEA.

Figure 3. Relative flux density on the axis and outside of the hollow cylinder of ri = 0.5 cm, r0 = 1cm,
z0 = 1cm at f = 300 Hz: solid line = real component, analytics, dash line = imaginary component,
analytics; ◦ = real component, FEA, � = imaginary component, FEA.

4. CYLINDER IN TRANSVERSE FIELD

4.1. Solid Cylinder

Let’s assume that the external field is applied in x-direction (Fig. 7). The vector magnetic potential
has all three components Ar, Aφ, Az . The potential satisfies Eq. (5) in the whole space when Coulomb
gauge is selected. The current density is non-zero for the area r = [0, r0], φ = [0, 2π], z = [−z0, z0], and
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Figure 4. Moment of currents induced in the solid cylinder of r0 = 1 cm, z0 = 1cm at B0 = 10 mT
of axial field: solid line = real component, analytics, dash line =imaginary component, analytical; ◦ =
real component, FEA, � = imaginary component, FEA.

Figure 5. Power loss in the hollow cylinder of ri = 0.5 cm, r0 = 1 cm in the applied field of B0 = 10 mT
at different lengths, 2z0 = 1 cm (1); = 2 cm (2); = 4 cm (3): solid line = analytical solution (21), ◦ =
FEA.

is zero outside this region. The boundary condition at infinity

Az(∞) = B0r sinφ. (33)

Equation (5) in the component notation can be written as

∇2Ar − Ar

r2
− 2

r2

∂Aφ

∂φ
= −μjr, (34)
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Figure 6. Relative amplitude of flux density on the axis of the thin cylindrical shell of r0 = 1cm,
z0 = 1cm, thickness hr = 0.35 mm at different frequencies: solid line = analytics, ◦ = FEA.

Figure 7. Conductive cylinder of radius r0 and axial length 2z0 in uniform transverse field directed in
x-axis.

∇2Aφ − Aφ

r2
+

2
r2

∂Ar

∂φ
= −μjφ, (35)

∇2Az = −μjz, (36)

where ∇2 = ∂2

∂r2 + 1
r

∂
∂r + 1

r2
∂2

∂φ2 + ∂2

∂z2 .
The scalar electric potential is also required to satisfy Eq. (6).
Because the magnetic field has a tangential symmetry over xz - and xy-planes and normal symmetry

over zy-plane, the potential components can be presented as

Ar = Ar(r, z) sin φ, Ar(r, z) =
∑
m=1

Arm(r) sinλmz, (37)
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Aφ = Aφ(r, z) cos φ, Aφ(r, z) =
∑
m=1

Aφm(r) sinλmz, (38)

Az = Az(r, z) sin φ, Az(r, z) =
∑
m=1

Azm(r) cosλmz, (39)

where λm = π(2m − 1)/(2z∞).
Since the cylinder has a finite length of L = 2z0, the current density and electric scalar potential

are zero beyond its volume while the magnetic field should be extended in z-direction far enough from
the cylinder top and base faces. We assume that the magnetic field is equal to the applied field at
z∞ ≤ z ≥ z∞. Thus the current density and electric potential are expanded in the Fourier series over
the interval z = [−z0, z0] while the vector potential is fit in the interval z = [−z∞, z∞]. For the current
density and electric scalar potential of the cylinder, we also account for the model symmetry

jr = �r sin φ, �r =
∑
l=1

jrl(r) sinηlz, (40)

jφ = �φ cos φ, �φ =
∑
l=1

jφl(r) sinηlz, (41)

jz = �z sinφ, �z =
∑
l=1

jzl(r) cosηlz, (42)

V = υ sinφ, υ =
∑
k=1

Vk(r) sinηkz, (43)

where ηk = π(2k − 1)/(2z0).
Equation (36) contains only one component of vector potential and can be solved similar to Eq. (11).

After substituting series (39) in (36) and integrating over [−z∞, z∞], the equation for the potential
harmonics is

∂2Azm

∂r2
+

1
r

∂Azm

∂r
− Azm

r2
− λ2

mAzm = −μ0j̃zm, (44)

where

j̃zm =
∑

l

amljzl, (45)

aml =
1

z∞

z0∫
−z0

cos λmz cos ηlzdz =
(−1)l

z∞
2ηl

λ2
m − η2

l

cos
π(2m − 1)z0

2z∞
, m, l ≥ 1. (46)

Similarly to the solution of Eq. (15), we can resolve Eq. (44) in the sum of a general solution of the
homogeneous equation and a particular solution. Because the current density harmonics in Eq. (30) are
dependent on the radial coordinate, we use the method of variable parameters to express the harmonics
Azm in the form of integrals

Azm = −B0rdm0 + μ0I1(λmr)

r0∫
r

j̃zm(r′)K1(λmr′)r′dr′ + μ0K1(λmr)

r∫
0

j̃zm(r′)I1(λmr′)r′dr′,

m ≥ 1. (47)

Equations (34) and (35) for the radial and angular components of vector potential contain crossing
terms. To avoid coupling between the equations, a few manipulations on Eqs. (34) and (35) should
be performed. First, let’s exclude the polar angle from the consideration by substituting Ar, Aφ into
Eqs. (34) and (35) in accordance with Eqs. (38)–(39), respectively

ΔAr − 2Ar

r2
+

2Aφ

r2
= −μ0�r, (48)

ΔAφ − 2Aφ

r2
+

2Ar

r2
= −μ0�φ, (49)
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where Δ = ∂2

∂r2 + 1
r

∂
∂r + ∂2

∂z2 .
Next, we combine Eqs. (48) and (49), namely we add and subtract them from each other to obtain

the equations for the new variables Aφ+r = Aφ + Ar and Aφ−r = Aφ − Ar

ΔAφ+r = −μ0(�φ + �r), (50)

ΔAφ−r −
4Aφ−r

r2
= −μ0(�φ −�r). (51)

Note that the variables Aφ+r and Aφ−r in Eqs. (50) and (51) are decoupled now, and the solutions
can be expressed in terms of Bessel functions of integer index. After multiplying Eqs. (50) and (51) by
1/z∞ sin λmz and integrating over [−z∞, z∞] the equations for the harmonics are

∂2Aφ+r,m

∂r2
+

1
r

∂Aφ+r,m

∂r
− λ2

mAφ+r,m = −μ0

(
j̃rm + j̃φm

)
, (52)

∂2Aφ−r,m

∂r2
+

1
r

∂Aφ−r,m

∂r
− 4Aφ−r,m

r2
− λ2

mAφ−r,m = −μ0

(
j̃φm − j̃rm

)
, (53)

where

Aφ±r,m = Aφ,m ± Aφ−r,m, (54)

j̃φm =
∑

l

bmljφl, (55)

j̃rm =
∑

l

bmljrl, (56)

bml =
1

z∞

z0∫
−z0

sin λmz sin ηlzdz =
(−1)l

z∞
2λm

λ2
m − η2

l

cos
π(2m − 1)z0

2z∞
, m, l ≥ 1. (57)

The solution of one-dimensional Equations (52) and (53) can be written in terms of Bessel functions
similar to solution of Eq. (47)

Aφ+r,m = μ0I0(λmr)

r0∫
r

(
j̃φm(r′) + (j̃rm(r′)

)
K0

(
λmr′

)
r′dr′

+μ0K0(λmr)

r∫
0

(
j̃φm

(
r′
)

+ (j̃rm

(
r′
))

I0(λmr′)r′dr′ m ≥ 1, (58)

Aφ−r,m = μ0I2(λmr)

r0∫
r

(
j̃φm

(
r′
)− (j̃rm

(
r′
))

K2(λmr′)r′dr′

+μ0K2(λmr)

r∫
0

(j̃φm(r′) − (j̃rm(r′))I2(λmr′)r′dr′ m ≥ 1. (59)

The current density harmonics jrm, jφm, jzm in Eqs. (47), (58), and (59) can be determined from the
condition for the divergence-free current density in Eq. (4). Let’s impose the Coulomb gauge for the
vector potential. Then the scalar electric potential satisfies the Laplace Equation (6). After substituting
Eq. (43) in Eq. (6), multiplying it by 1/z0sinηkz and integrating over [−z0, z0], the equations for the
harmonics of scalar potential are

∂2Vk

∂r2
+

1
r

∂Vk

∂r
− Vk

r2
− η2

kVk = qk, (60)

where the right part of Eq. (60) appears because the normal derivative of scalar potential on the cylinder
surface at z = ±z0 is different from zero. It can be further expressed through the time derivative of
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vector potential in accordance with Eq. (7)

qk = −2(−1)k+1

z0

∂υ

∂z
|z=z0 = (−1)k

2iω
z0

Az(z0). (61)

The boundary conditions for the harmonics of scalar potential are

Vk(0) = 0, (62)
∂Vk

∂r |r=r0

= −iωÃrk(r0), (63)

where
Ãrk(r0) =

z∞
z0

∑
m

bkmArm(r0). (64)

Note that the boundary condition for the derivative of scalar potential in Eq. (63) is a result of zero
radial component of current density at r = r0. In general, Eq. (60) can be resolved through the integrals
similar to Eq. (20)

Vk = GkI1(ηkr) + iωI1(ηkr)

r0∫
r

qk(r′)K1(ηkr
′)r′dr′ + iωK1(ηkr)

r∫
0

qk(r′)I1(ηkr
′)r′dr′, (65)

where coefficients Gk are determined from the boundary condition in Eq. (62) as:

Gk = − iω

ηkI
′
1(ηkr0)

(Ãrm(r0) + K ′
1(ηkr0)

r0∫
0

qkI1(ηkr
′)r′dr′), (66)

where I ′1,K ′
1 are the first derivatives of Bessel functions.

The scalar potential derivative at z = ±z0 can be expressed through σ−1divσ �A. Indeed Eq. (4)
can be rewritten as:

∇2V = − iω

σ
divσ �A. (67)

The divergence in the right part of Eq. (67) is not zero anymore if we take the ends of cylinder into
consideration. For the Coulomb gauge divσ �A is zero everywhere inside the cylinder but the surface
where it has a jump of σ( �A�n) that is called as a surface divergence [16]. Because the conductivity is
discontinuous at z = ±z0 and the integration totally includes the jump of σ we have

1
z0

z0∫
−z0

div
(
σ �A
)

sin ηkzdz =
1
z0

z0∫
−z0

Az
∂σ

∂z
sin ηkzdz =

2(1)k+1

z0
σAz(z0). (68)

Thus the right part in Eq. (60) can be replaced by the integral of divσ �A after accounting for the angular
dependence of vector potential components in Eqs. (37)–(39)

qk =
−iω

z0σ

z0∫
−z0

[
∂(σAr)

∂r
+

∂(σAz)
∂z

+
σ(Ar − Aφ)

r

]
sin ηkzdz. (69)

After replacing the vector potential components by harmonics over the axial coordinate and subsequent
integration, we obtain

qk = −iω

(
∂Ãrk

∂r
− Ãφ−r,k

r
− ηkÃzk

)
, (70)

where
Ãφ−r,k =

z∞
z0

∑
m

bmkAφ−r,m, Ãzk =
z∞
z0

∑
m

amkAzm. (71)
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The coefficients Ãzk are the result of fitting the axial component Az to the cosine harmonics along the
cylinder length. We use values of potential up to the ends of the interval [−z0, z0] where −iσωAz is
zeroed because of the jump in the conductivity. This allows us to account for the surface divergence at
z = ±z0. The computation of qk using Eq. (70) is more complex than using a straight expression (61).
However, including divσ �A in the equation for the scalar potential enforces the divergence-free condition
in Eq. (4). To combine the advantages of two methods for computation of qk, one can add div �A (= 0)
to the jump of potential in expression (61)

qk = (−1)k
2iω
z0

Az(z0) + iω
z∞
z0

∑
l

(
∂Arl

∂r
− Aφ−r,l

r
− λlAzl

)
bkl. (72)

The latter expression for qk accurately includes the surface divergence and enforces (4) at the same
time.

The harmonics of current density can be expressed through the harmonics of potentials as follows:

jrk = −σ

(
iωÃrk +

∂Vk

∂r

)
,

jφk = −σ

(
iωÃφk +

Vk

r

)
,

jzk = −σ
(
iωÃzk + ηkVk

)
.

(73)

The solutions in Eqs. (47), (58), (59) and (65) contain the unknown coefficients of harmonics
Ar+φ,m Aφ−r,m, Azm, Vk. After approximation of the integrals by a high accuracy quadratures on
the grid rn = rn−1+hrn, n = 1, N built for the interval [0, r0], these expressions form a system of linear
equations of order of 4NM where M is the number of harmonics in series (37)–(39), (43). The structure
of the system is similar to Eq. (21), but it is more complex since the current density components in
Eqs. (47), (58), (59) should be expressed through the vector and scalar potential harmonics using
Eq. (73). To simplify the solution, the system of equations can be solved also using the iterative
approach. In this case, the current density in Eq. (73) is split so that the parts associated with the time
derivatives of vector potential are included into the matrix coefficients while the terms associated with
the electric potential are kept in the right part of system.

The analytical method has been applied to the copper cylinder of radius, r0 of 1 cm, and half
length, z0 of 1 cm. The number of harmonics M has been selected in the range ≥ 30, and the far-field
boundary conditions have been applied at z ≥ 3z0. The distribution of current density is presented in
Fig. 8 in comparison with the results from FEA [15] and FDM [17]. A pure hexahedral mesh in all
directions has been used in both numerical methods. The mesh has been refined in both methods until
they provide the close solutions in terms of local fields, energy and moment of induced currents. For
FDM, the symmetry over the polar angle in Eqs. (37)–(39) has been used first, and then four coupled
2-D equations have been solved. 2-D equations have been approximated using the integral-interpolation
method [17]. The finite-differential schemes for the equations are similar to those reported in [18].

4.2. Hollow Cylinder

Similar to the cylinder in the axial field, the calculation formulas for the transverse field can be applied in
the case of the hollow cylinder with inner radius ri, outer radius r0 and axial length 2z0. The equations
for the components of vector potential in Eqs. (47), (58)–(59) differ only by the integration range. The
lower zero limits in integrals of Eqs. (47), (58)–(59) should be replaced by ri. Thus the grid along the
radial coordinate is built in the interval [ri, r0]. The expression for the scalar electric potential contains
an additional Bessel function of second kind K1(ηkr) with the constant coefficients

Vk = GkI1(ηkr)+ FkK1(ηkr)+ I1(ηkr)

r0∫
r

qk

(
r′
)
K1

(
ηkr

′) r′dr′ + K1(ηkr)

r∫
ri

qk

(
r′
)
I1

(
ηkr

′) r′dr′. (74)

This is because the scalar potential is considered for r > 0. Thus the solution in Eq. (74) that includes
infinite functions K1(ηkr) at r = 0 is finite everywhere in the hollow cylinder. The boundary condition
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Figure 8. (a) Radial component of current density in YZ -plane, (b) peripheral component of current
density in XZ-plane and (c) axial component of current density in YZ -plane across the cylinder of
r0 = 1cm, z0 = 1cm at f = 300 Hz, B0 = 10 mT: solid line = realjr, analytics, dash line = imaginaryjr,
analytics; ◦ = realjr, FEA, � = imaginaryjr, FEA; × = realjr, FDM, ∗ = imaginaryjr, FDM.

on the outer surface of the hollow cylinder is the same as Eq. (63). Similarly, on the inner surface we
have

∂Vk

∂r |r=ri

= −iωÃkr(ri). (75)

Coefficients Gk and Fk are determined from the boundary condition system in Eqs. (63) and (75) as

Gk =
(
K ′

k(ηkr0)gk − K ′
k(ηkri)fk

)
/Dk, (76)

Fk =
(
I ′k(ηkr0)fk − I ′k(ηkri)gk

)
/Dk, (77)

where

gk = −iωÃrk(r0)/ηk − K ′
1(ηkr0)

r0∫
ri

qkI1

(
ηkr

′) r′dr′, (78)
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fk = −iωÃrk(ri)/ηk − I ′1(ηkri)

r0∫
ri

qkK1

(
ηkr

′) r′dr′, (79)

Dk = I ′k(ηkr0)K ′
k(ηkri) − I ′k(ηkri)K ′

k(ηkr0). (80)

The harmonics of Az in the bore of the cylinder

Azm |r≤ri = −B0rdm0 + μ0I1(λmr)

r0∫
ri

j̃zm

(
r′
)
K1

(
λmr′

)
r′dr′. (81)

For Aφ one can derive

Aφm |r≤ri =
μ0

2
I0(λmr)

r0∫
ri

[
j̃φm

(
r′
)

+ j̃rm

(
r′
)]

K0

(
λmr′

)
r′dr′

+
μ0

2
I2(λmr)

r0∫
ri

[
j̃φm

(
r′
)− j̃rm

(
r′
)]

K2

(
λmr′

)
r′dr′. (82)

The component Bx on z-axis is

Bx =
1
r

∂Az

∂φ
− ∂Aφ

∂z
, (83)

Combining Eqs. (81)–(83) we obtain the flux density on the axis of the cylinder

Bx |x;y=0 = −B0 +
μ0

2

∑
m

λm cos(λmz)

⎡
⎣ r0∫

ri

j̃zm(r′)K1(λmr′)r′dr′

−
r0∫

ri

(j̃rm(r′) + j̃φm(r′))K0(λmr′)r′dr′

⎤
⎦ . (84)

Other components are zero on the axis of the cylinder, thus Bx gives us the magnitude of the field on
z-axis.

Similar to the solid cylinder, the formulas for the hollow cylinder have been verified by the
comparison with the induced currents computed by numerical methods (Fig. 9–Fig. 10) in the range of
frequencies. The steps in the radial grid have been selected based on the frequency of the applied field.
For example, at least 30 steps (N = 31) over the radial coordinate are used for the frequency of 2 kHz
in the case study with the results presented in Fig. 10.

4.3. Cylindrical Shell

A cylindrical shell is a special case of the hollow cylinder when we can neglect a radial dependence of
current density [2]. First, consider how the thin shell approximation can simplify the solution in the
case of hollow cylinder. Since the thickness of the shell typically is significantly less than its radius, it is
practical to consider a one-layer (N = 1) approximation for the derived solution. Indeed if we neglect
the dependence of electric scalar on the radial coordinate, from Eq. (41) we can derive

Vk(r0) = − qk

1/r2
0 + η2

k

. (85)

This simple approach has a few limits. A one-layer approximation totally ignores the difference in
the current density across the shell thickness although it accounts for the radial component of vector
potential, and hence for the radial current density associated with its time derivative. Also the one-
layer model may lead to the ill-defined matrix for the harmonics of vector potential starting at high
frequencies. It is illustrated in Fig. 11 for a 0.35 mm thick copper shell of 1 cm radius. When the
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Figure 9. (a) Radial component of current density in YZ -plane, (b) peripheral component of current
density in XZ-plane and (c) axial component of current density in YZ -plane across a hollow cylinder
of r0 = 1cm, ri = 0.5 cm, z0 = 1 at f = 300 Hz, B0 = 10 mT: solid line = realjz, analytics, dash line
= imaginaryjz, analytics; ◦ = realjz, FEA, � = imaginaryjz, FEA.

frequencies are low, the field on the axis is in a good agreement with the accurate approximation of the
shell by five layers (N = 6). When the frequency increases, the matrix condition number becomes too
large, and the approximation in Eq. (85) at N = 1 starts to give us an inaccurate field on the axis. It
should be noted that the calculation of qk in (85) using a straight expression (41) gives a more accurate
result since in the case of just one layer the derivative dAr/dr in the expression for div �A is hard to
determine accurately.

The alternative solution for the thin shell can be derived using a concept of stream function [2]
and a scalar magnetic potential [19–20]. The magnetic field is split into the applied field, �H0, and the
field from the eddy currents, �He, where the normal component of x-oriented field on the shell surface is
H0r = H0 cos φ. Outside the cylindrical shell we can use the scalar magnetic potential U to calculate the
field from the eddy currents �He = −∇U . The magnetic scalar potential satisfies the Laplace equation
everywhere but the shell. The whole space along the radial coordinate is divided by the shell into two
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Figure 10. Field on axis of the hollow cylinder of r0 = 1 cm, ri = 0.5 cm, z0 = 1cm at different
frequencies: solid line = analytics, ◦ = FEA.

Figure 11. Field on axis of the cylindrical shell of r0 = 1cm, dr = 0.35 mm, z0 = 1 cm at different
frequencies: solid line = 5 steps in radial grid, ∗ = Vk calculated per (85), Δ = scalar magnetic potential
method per (99), dash line = superconducting shell.

regions: r > r0 (marked by upper index +) and r < r0 (marked by upper index −). The scalar potential
inside (−) and outside (+) the shell can be written in terms of Bessel functions as

U− = cos φ

M∑
m=1

C−
mI1(λmr) cos λmz,

U+ = cos φ
M∑

m=1

C+
mK1(λmr) cos λmz

, (86)
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where C−
m and C+

m are the constants. Because the normal component of the field is continuous everywhere
including the shell surface the constants in Eq. (86) are related as:

C−
mI ′1(λmr0) = C+

mK ′
1(λmr0). (87)

The field tangential component has a jump by the amount of surface current density �js = hr
�j when

crossing the shell thickness from the inside to the outside

�js

∣∣∣∣ r=r0
0≤z≤z0

= �n ×
(

�H+
e − �H−

e

)
. (88)

The scalar magnetic potential also has a jump [16] on the shell surface u = U+ −U−. After expressing
the field through the scalar magnetic potential in Eq. (88), one can write

�js

∣∣∣∣ r=r0
0≤z≤z0

= �n × (∇su), (89)

where index s means that the nabla operator ∇s works on the surface, and �n is the unit vector normal
to the surface.

In terms of components (89) can be rewritten as

jsφ =
∂u

∂z
, jsz = − 1

r0

∂u

∂φ
. (90)

In accordance with [2] the stream function Ψ(φ, z) relates to the current density as
�js = hrσ∇s × Ψ�n, (91)

or in terms of components

jsφ = hrσ
∂Ψ
∂z

, jsz = −hrσ
1
r0

∂Ψ
∂φ

. (92)

The stream function satisfies the equation

1
r2
0

∂2Ψ
∂φ2

+
∂2Ψ
∂z2

= iωμ0Hr, (93)

where Hr is the radial, i.e., component of the field normal to the cylindrical surface. Comparing
Eq. (90) with Eq. (92), we can conclude that the potential jump u satisfies the equation similar to
Eq. (93), namely

1
r2
0

∂2u

∂φ2
+

∂2u

∂z2
= iωμ0σhrHr. (94)

The potential jump u exists only at r = r0 and 0 ≤ z ≤ z0, and it can be presented in the form of series

u = cos φ

M∑
m=1

um cos ηmz. (95)

After substitution Eq. (95) in Eq. (94) and integrating over [0, z0], the coefficients um are determined
as follows:

um = − iωμ0σhr(
η2

m + 1/r2
0

) zinf

z0

[
d0m +

∑
l

λlblmC−
l I1(λlr0)

]
. (96)

The second equation for the coefficients C−
m and um can be determined from the potential junction at

r = r0

U− = U+ − u 0 ≤ z ≤ z0

U+, z0 ≤ z ≤ zinf
. (97)

After integrating Eq. (97) over [0, z0] and substituting C+
m from Eq. (87), we obtain

C−
m =

[
I1(λmr0) − K1(λmr0)

I ′1(λmr0)
K ′

1(λmr0)

]−1∑
l

bmlul. (98)
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Equations (96) and (98) form the system of linear equations for the coefficients C−
m and um that can

be solved directly. However, Eqs. (96) and (98) can be solved by iterations with some under relaxation
factor. We assume C−

m = 0 for the first iteration, find um from Eq. (96) and update C−
m using Eq. (98)

with under relaxation. We iterate Eqs. (96) and (98) until the convergence tolerance is achieved. The
iterative method implements the perturbation of the normal field Hr by the induced field starting with
H0 as a first approximation for the field on the shell surface. The iterative algorithm gives a more
steady solution at high frequencies when the matrix of system in Eqs. (96) and (98) becomes ill defined.

The magnetic field on z-axis is calculated as

Bx |x;y=0 = −B0 − 1
2

∑
m

λmC−
m cos(λmz). (99)

The thin sheet approximation using the scalar potential works well even at high frequencies (Fig. 11).
The discrepancy from the accurate solution (N = 6) increases at frequencies above 15 kHz when the
shielding capacity of the shell is close to saturation. The solution in Eqs. (96) and (98) becomes
unresponsive to the frequency because of difficulties in the accurate estimation of the normal component
of the resultant field Hr on the shell surface (right part of Eq. (94)).

Figure 12. Moment of induced current and power loss in the solid cylinder of r0 = 1cm, z0 = 1 cm
at B0 = 10 mT of transverse field: solid line = realM , analytics, dash line = imaginaryM , analytics;
◦ = realM , FEA, � = imaginaryM , FEA; × = realM , FDM, ∗ = imaginaryM , FDM dash-dot line =
power loss, analytics; Δ = power loss, FEA; ♦ = power loss, FDM.

4.4. Magnetic Moment and Power Loss

The magnetic moment Mx of currents induced in the cylinder is

Mx = 8

π/2∫
0

r0∫
ri

z0∫
0

(jzr sin φ + jyz)(rdφ)drdz. (100)

After substituting series (25)–(27) and integrating one can find

Mx = 2π
M∑

m=1

(−1)(m+1)

[
1

ηm

N∑
n=1

jzm(rn)r2
nwnhrn +

1
η2

m

N∑
n=1

(jrm(rn) + jφm(rn)) rnwnhrn

]
. (101)



Progress In Electromagnetics Research B, Vol. 81, 2018 99

The power loss in the cylinder is

P =
1
2σ

2π∫
0

r0∫
ri

z0∫
0

(
jrj

∗
r + jφj∗φ + jzj

∗
z

)
rdzdr

=
πz0

2σ

N∑
n=1

M∑
m=1

M∑
l=1

[
c−ml

(
jrmj∗rl + jφmj∗φl

)
+ c+

mljzmj∗zl

]
wnrnΔrn. (102)

where

c±ml =
1
z0

(
sin(ηm − ηl)z0

ηm − ηl
± sin(ηm + ηl)z0

ηm + ηl

)
.

The results of calculation of power loss and magnetic moment of the copper solid cylinder using
Eqs. (101)–(102) in test models agree well with the data from FEA and FDM (Fig. 12).

5. CONCLUSION

The analytical solutions for the eddy current problem in the conductive solid and hollow cylinders in
cases of axial and transverse fields have been derived. The separation of three components has been
achieved in the equation for vector potential in cylindrical coordinates. The magnetic field outside
the cylinder or inside the bore is expressed in terms of Bessel functions. Formulas have been verified
by the comparison of the calculation results in test models with the FDM method and modern FEA
codes. Formulas for the power loss and magnetic moment of currents induced in the cylinder have been
also found. These have been validated over a wide range of frequencies within the limits of quasistatic
approximation.
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1. Lameraner, J. and M. Štafl, Eddy Currents, Iliffe Books London, Ltd., 1966.
2. Knoepfel, H. E., Magnetic Fields, John Wiley & Sons, Inc, New York-Toronto, 2000.
3. Batygin, V. V. and I. N. Toptygin, Problems in Electrodynamics, problems 368 and 371, Academic,

London, U.K., 1976.
4. Grimberg, R, E. Radu, O. Mihalache, and A. Savin, “Calculation of the induced electromagnetic

field created by an arbitrary current distribution located outside a conductive cylinder,” J. Phys.
D: Appl. Phys., Vol. 30, 2285–2291, 1997.

5. Brandt, E. H., “Superconductor disks and cylinders in an axial magnetic field. I. Flux penetration
and magnetization curves,” Phys. Rev. B, Vol. 58, No. 10, 6506–6522, 1998.

6. Lopez, H. S., M. Poole, and S. Crozier, “Eddy current simulation in thick cylinders of finite length
induced by coils of arbitrary geometry,” Journal of Magnetic Resonance, Vol. 207, 251–261, 2010.

7. Bowler, J. R. and T. P. Theodoulidis, “Eddy currents induced in a conducting rod of finite length
by a coaxial encircling coil,” J. Phys. D: Appl. Phys., Vol. 38, 2861–2868, 2005.

8. Perry, M. and T. Jones, “Eddy current induction in a solid conducting cylinder with a transverse
magnetic field,” IEEE Trans. on Magn., Vol. 14, No. 4, 227–231, 1978.

9. Fawzi, T. H., K. F. Ali, and P. E. Burke, “Eddy current losses in finite length conducting cylinders,”
IEEE Trans. on Magn., Vol. 19, No. 5, 2216–2218, 1983.

10. Morisue, T. and M. Fukumi, “3-D eddy current calculation using the magnetic vector potential,”
IEEE Trans. on Magn., Vol. 24, No. 1, 106–109, 1988.

11. Huang, Q. S., L. Krahenbuhl, and A. Nicolas, “Numerical calculation of steady-state skin effect
problems in axisymmetry,” IEEE Trans. on Magn., Vol. 24, No. 1, 201–204, 1988.

12. Turner, L. R., et al., “Results from the FELIX experiments on electromagnetic effects of hollow
cylinders,” IEEE Trans. on Magn., Vol. 21, No. 6, 2324–2328, 1985.



100 Zhilichev

13. International Electromagnetic Workshops: Test Problems, Apr. 1986, available online:
https://www.osti.gov/scitech/servlets/purl/7179128.

14. Grinberg, G. A., The Selected Problems of Mathematical Theory of Electric and Magnetic
Phenomena, Acad. Sci. USSR, Moscow-Leningrad, Russia, 1948.

15. Opera 2D, User Guide and Opera 3D, User Guide, Cobham Technical Services, Vector Fields
Software, Kidlington, UK, Mar. 2016.

16. Tamm, I. E., Fundamentals of the Theory of Electricity, MIR Publishers, Moscow, 1979.
17. Samarskiy, A. A., Theory of Finite Difference Schemes, Nauka, Moscow, 1977.
18. Zhilichev, Y., “Superconducting cylinder of finite length in transverse magnetic field,” Latvian

Journal of Physics and Technical Sciences, No. 5, 14–21, 2001.
19. Ancelle, B., A. Nicolas, and J. C. Sabonnadiere, “A boundary integral equation method for high

frequency eddy currents,” IEEE Trans. on Magn., Vol. 17, No. 6, 2568–2570, 1981.
20. Poltz, J. and K. Romanowski, “Solution of quasi-stationary fields problems by means of magnetic

scalar potential,” IEEE Trans. on Magn., Vol. 19, No. 6, 2425–2428, 1983.


