Vol. 81
Latest Volume
All Volumes
PIERB 109 [2024] PIERB 108 [2024] PIERB 107 [2024] PIERB 106 [2024] PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2018-06-04
Wideband Radio Frequency Noiselet Waveforms for Multiresolution Nondestructive Testing of Multilayered Structures
By
Progress In Electromagnetics Research B, Vol. 81, 1-23, 2018
Abstract
Developed initially for military applications, radar technology is rapidly spreading to areas as diverse as natural resource monitoring, civil infrastructure assessment, and homeland security. Waveform design is a critical component to extract maximum information about the targets or features being probed. Waveforms derived from noiselets, one of the family functions of wavelets, can be advantageous in certain applications owing to their random and uncorrelated properties. In this work, radio frequency (RF) noiselet waveforms are introduced and their performance related to detection of arbitrary target interfaces using the cross-correlation method, a form of matched filtering, is assessed. The application of the RF noiselet waveform for nondestructive testing (NDT) of the multilayered dielectric structures is discussed. The application of wideband noiselet waveforms for multiresolution analysis (MRA) is demonstrated.
Citation
Tae Hee Kim, and Ram M. Narayanan, "Wideband Radio Frequency Noiselet Waveforms for Multiresolution Nondestructive Testing of Multilayered Structures," Progress In Electromagnetics Research B, Vol. 81, 1-23, 2018.
doi:10.2528/PIERB18033007
References

1. Coifman, R., F. Geshwind, and Y. Meyer, "Noiselets," Appl. Comput. Harmon. Anal., Vol. 10, No. 1, 27-44, 2001.
doi:10.1006/acha.2000.0313

2. Candes, E. and J. Romberg, "Sparsity and incoherence in compressive sampling," Inverse Prob., Vol. 23, 969-985, 2007.
doi:10.1088/0266-5611/23/3/008

3. Keep, D. N., "Frequency-modulation radar for use in the mercantile marine," Proc. IEE --- Part B: Radio Electr. Electron., Vol. 103, No. 10, 519-523, 1956.
doi:10.1049/pi-b-1.1956.0203

4. Narayanan, R. M., "Through-wall radar imaging using UWB noise waveforms," J. Franklin Inst., Vol. 345, No. 6, 659-678, 2008.
doi:10.1016/j.jfranklin.2008.03.004

5. Ferguson, B., S. Mosel, W. Brodie-Tyrrell, M. Trinkle, and D. Gray, "Characterisation of an L-band digital noise radar," Proc. 2007 IET International Conf. on Radar Systems, Edinburgh, UK, Oct. 2007, doi: 10.1049/cp:20070634.

6. Axelsson, S. R., "Noise radar using random phase and frequency modulation," IEEE Trans. on Geoscience and Remote Sensing, Vol. 42, No. 11, 2370-2384, 2004.
doi:10.1109/TGRS.2004.834589

7. Foucher, S., G. B. Benie, and J. M. Boucher, "Multiscale MAP filtering of SAR images," IEEE Trans. Image Process., Vol. 10, No. 1, 49-60, 2001.
doi:10.1109/83.892442

8. Graps, A., "An introduction to wavelets," IEEE Comput. Sci. Eng., Vol. 2, No. 2, 50-61, 1995.
doi:10.1109/99.388960

9. Peng, Z. K. and F. L. Chu, "Application of the wavelet transform in machine condition monitoring and fault diagnostics: A review with bibliography," Mech. Syst. Sig. Process., Vol. 18, No. 2, 199-221, 2004.
doi:10.1016/S0888-3270(03)00075-X

10. Walnut, D. F., An Introduction to Wavelet Analysis, Springer Science & Business Media, 2014.

11. Akansu, A. N. and R. A. Haddad, Multiresolution Signal Decomposition: Transforms, Subbands, and Wavelets, Academic Press, 2001.

12. Rajaraman, P., N. A. Sundaravaradan, R. Meyur, M. J. B. Reddy, and D. K. Mohanta, "Fault classification in transmission lines using wavelet multiresolution analysis," IEEE Potentials, Vol. 35, No. 1, 38-44, 2016.
doi:10.1109/MPOT.2015.2468775

13. Rohwer, C., "Multiresolution analysis of sequences," Nonlinear Smoothing and Multiresolution Analysis, Chapter 7, 71-90, Birkhauser Verlag, Basel, Switzerland, 2005.

14. Sadiku, M. N. O., C. Akujuobi, and R. C. Garcia, "An introduction to wavelets in electromagnetics," IEEE Microwave Mag., Vol. 6, No. 2, 63-72, 2005.
doi:10.1109/MMW.2005.1491268

15. Wang, N., Y. Zhang, and S. Wu, "Radar waveform design and target detection using wavelets," Proc. 2001 CIE International Conf. on Radar, 506-509, Beijing, China, Oct. 2001.

16. Peele, L. C. and A. N. Pergande, "Wavelet-based radar,", United States Patent No. 5,990,823, 23, Nov. 1999.

17. Wang, L., S. Law, C. Fraker, R. Vela, Y. F. Zheng, R. Ewing, and G. Scalzi, "Development of a new software-defined S-band radar and its use in the test of wavelet-based waveforms," Proc. 2011 IEEE National Aerospace and Electronics Conf. (NAECON), 162-166, Fairborn, OH, USA, Jul. 2011.

18. Cao, S., Y. F. Zheng, and R. L. Ewing, "Wavelet-based radar waveform adaptable for different operation conditions," Proc. 10th European Radar Conf., 149-152, Nuremberg, Germany, Oct. 2013.

19. Cao, S., Y. F. Zheng, and R. L. Ewing, "Wavelet-based waveform for effective sidelobe suppression in radar signal," IEEE Trans. Aerosp. Electron. Syst., Vol. 50, No. 1, 265-284, 2014.
doi:10.1109/TAES.2013.120067

20. Cao, S., Y. F. Zheng, and R. L. Ewing, "Wavelet-based radar waveform for moving targets detection," Proc. 2014 IEEE Radar Conf., 1149-1154, Cincinnati, OH, USA, May 2014.

21. Cao, S., Y. F. Zheng, and R. L. Ewing, "Wavelet-based Gaussian waveform for spotlight synthetic aperture radar," Proc. 2014 IEEE National Aerospace and Electronics Conf. (NAECON), 267-273, Dayton, OH, USA, Jun. 2014.

22. Cao, S., Y. F. Zheng, and R. L. Ewing, "A wavelet-packet-based radar waveform for high resolution in range and velocity detection," IEEE Trans. Geosci. Remote Sens., Vol. 53, No. 1, 229-243, 2015.
doi:10.1109/TGRS.2014.2321258

23. Sullivan, E. J., R. P. Goddard, H. A. Greenbaum, and K. P. Bongiovanni, "Generating simulated reverberation using noiselets," J. Acoust. Soc. Am., Vol. 119, No. 5, Pt. 2, 3273, 2006.
doi:10.1121/1.4786158

24. Matsumoto, M. and N. Takuji, "Mersenne twister: A 623-dimensionally equidistributed uniform pseudo-random number generator," ACM Trans. Model. Comput. Simul. (TOMACS), Vol. 8, No. 1, 3-30, 1998.
doi:10.1145/272991.272995

25. Balanis, C. A., Advanced Engineering Electromagnetics, John Wiley & Sons, 1999.

26. Richards, M. A. "Fundamentals of Radar Signal Processing," McGraw-Hill, 2005.

27. Martinez-Lorenzo, J. A., F. Quivira, and C. M. Rappaport, "SAR imaging of suicide bombers wearing concealed explosive threats," Progress In Electromagnetics Research, Vol. 125, 255-272, 2012.
doi:10.2528/PIER11120518

28. Dehmollaian, M. and K. Sarabandi, "Refocusing through building walls using synthetic aperture radar," IEEE Trans. Geosci. Remote Sens., Vol. 46, No. 6, 1589-1599, 2008.
doi:10.1109/TGRS.2008.916212

29. Stolt, R. H., "Migration by Fourier transform," Geophys., Vol. 43, No. 1, 23-48, 1978.
doi:10.1190/1.1440826

30. Lopez-Sanchez, J. M. and J. Fortuny-Guasch, "3-D radar imaging using range migration techniques," IEEE Trans. Antennas Propag., Vol. 48, No. 5, 728-737, 2000.
doi:10.1109/8.855491

31. Gharamohammadi, A., Y. Norouzi, and H. Aghaeinia, "Optimized UWB signal to shallow buried object imaging," Progress In Electromagnetics Research Letters, Vol. 72, 7-10, 2018.
doi:10.2528/PIERL17091506