Vol. 76
Latest Volume
All Volumes
2017-06-19
SRR Superstrate for Gain and Bandwidth Enhancement of Microstrip Patch Antenna Array
By
Progress In Electromagnetics Research B, Vol. 76, 73-85, 2017
Abstract
This article presents a microstrip fed patch antenna array, loaded with metamaterial superstrate. An unloaded antenna array resonates at IEEE 802.16a 5.8 GHz Wi-MAX band with gain of 4.3 dBi and bandwidth of 425 MHz whereas when the same array is loaded with a metamaterial superstrate, composed of the pair of Split Ring Resonators (SRR), there is simultaneous gain and bandwidth improvement to 8 dBi and 680 MHz, respectively, which corresponds to gain improvement by 86% and bandwidth enhancement of 60%. The fabrication of this proposed antenna array is done, and its simulated and measured results compared. Equivalent circuit model of this composite structure has been developed and analyzed. The electrical dimension of the patch is 0.23λx0.3λ.
Citation
Chirag Arora, Shyam Sundar Pattnaik, and Rudra Narayan Baral, "SRR Superstrate for Gain and Bandwidth Enhancement of Microstrip Patch Antenna Array," Progress In Electromagnetics Research B, Vol. 76, 73-85, 2017.
doi:10.2528/PIERB17041405
References

1. Islam, M. A. and N. C. Karmakar, "A 4× 4 dual polarized mm-wave ACMPA array for a universal mm-wave chipless RFID tag reader," IEEE Trans. Antennas Propag., Vol. 63, No. 4, 1633-1640, 2015.
doi:10.1109/TAP.2015.2398355

2. Kovitz, J. M. and Y. R. Samii, "Using thick substrates and capacitive probe compensation to enhance the bandwidth of traditional CP patch antennas," IEEE Trans. Antennas Propag., Vol. 62, No. 8, 4970-4979, 2014.
doi:10.1109/TAP.2014.2343239

3. Chow, Y. L. and K. L. Wan, "Miniaturizing patch antenna by adding a shorting pin near the feed probe — A folded monopole equivalent," Proc. of IEEE Antennas and Propagation Society International Symposium, 6-9, China, 2002.
doi:10.1109/APS.2002.1016913

4. Tang, X., H. Wong, Y. Long, Q. Xue, and K. L. Lau, "Circularly polarized shorted patch antenna on high permittivity substrate with wideband," IEEE Trans. Antennas Propag., Vol. 60, No. 3, 1588-1592, 2012.
doi:10.1109/TAP.2011.2180307

5. Prasad, R. R., B. Srinu, and C. D. Raj, "Design and analysis of multi substrate microstrip patch antenna, microelectronics, electromagnetics and telecommunications," Lecture Notes in Electrical Engineering, Vol. 372, 733-739, Springer, India, 2016.
doi:10.1007/978-81-322-2728-1_70

6. Mittra, R., Y. Li, and K. Yoo, "A comparative study of directivity enhancement of microstrip patch antennas with using three different superstrates," Microw. Optical Technology Lett., Vol. 52, No. 2, 327-331, 2010.
doi:10.1002/mop.24898

7. Foroozesh, A. and L. Shafai, "Investigation into the effects of the patch type FSS superstrate on the high-gain cavity resonance antenna design," IEEE Trans. Antennas Propag., Vol. 58, No. 2, 258-270, 2010.
doi:10.1109/TAP.2009.2037702

8. Rao, N. and K. V. Dinesh, "Gain and bandwidth enhancement of a microstrip antenna using partial substrate removal in multiple-layer dielectric substrate," PIERS Proceedings, 1285-1289, Suzhou, China, September 12–16, 2011.

9. Attia, H. and O. M. Ramahi, "EBG superstrate for gain and bandwidth enhancement of microstrip array antennas," Proc. of IEEE International Symposium on Antennas and Propagation AP-S 2008, 1-4, Canada, 2008.

10. Nishiyama, E., M. Aikawa, and S. Egashira, "Stacked microstrip antenna for wideband and high gain," IEE Proc. Microw. Antennas Propag., Vol. 151, No. 2, 143-148, 2004.
doi:10.1049/ip-map:20040171

11. Honari, M. M., A. Abdipour, and G. Moradi, "Bandwidth and gain enhancement of an aperture antenna with modified ring patch," IEEE Antennas Wirel. Propag. Lett., Vol. 10, 1413-1416, 2011.
doi:10.1109/LAWP.2011.2178998

12. Lapine, M. and S. Tretyakov, "Contemporary notes on metamaterials," IET Microw., Antennas and Propag., Vol. 1, No. 1, 3-11, 2007.
doi:10.1049/iet-map:20050307

13. Smith, D. R., W. J. Padilla, D. C. Vier, S. C. N. Nasser, and S. Schultz, "Composite medium with simultaneous negative permeability and permittivity," Physical Review Lett., Vol. 84, No. 18, 4184-4187, 2000.
doi:10.1103/PhysRevLett.84.4184

14. Engheta, N. and R. W. Ziolkowski, "A positive future for double negative metamaterials," IEEE Trans. Microw. Theory Tech., Vol. 53, No. 4, 1535-1556, 2005.
doi:10.1109/TMTT.2005.845188

15. Alu, A., N. Engheta, A. Erentok, and R. W. Ziolkowski, "Single negative, double-negative, and low-index metamaterials and their electromagnetic applications," IEEE Antennas and Propag. Magazine, Vol. 49, No. 1, 23-36, 2007.
doi:10.1109/MAP.2007.370979

16. Joshi, J. G., S. S. Pattnaik, and S. Devi, "Metamaterial embedded wearable rectangular microstrip patch antenna," Hindawi Int. J. of Antennas and Propag., Vol. 2012, 1-9, 2012.

17. Joshi, J. G., S. S. Pattnaik, and S. Devi, "Metamaterial loaded square slotted dual band microstrip patch antenna," Proc. of IEEE Applied Electromagnetics Conference (AEMC-2011), 1-4, India, 2011.

18. Ferdous, S., A. Hossain, S. M. H. Chowdhury, and M. R. C. Mahdy, "Reduced and conventional size multi-band circular patch antennas loaded with metamaterials," IET J. Micro., Antennas Propag., Vol. 7, No. 7, 768-776, 2013.
doi:10.1049/iet-map.2012.0582

19. Chaimool, S., K. L. Chung, and P. Akkaraekthalin, "Simultaneous gain and bandwidths enhancement of a single-feed circularly polarized microstrip patch antenna using a metamaterial reflective surface," Progress In Electromagnetics Research B, Vol. 22, 23-37, 2010.
doi:10.2528/PIERB10031901

20. Chung, K. L. and S. Chaimool, "Broadside gain and bandwidth enhancement of microstrip patch antenna using a MNZ-metasurface," Microw. Optical Technology Lett., Vol. 54, No. 2, 529-532, 2012.
doi:10.1002/mop.26574

21. Arora, C., S. S. Pattnaik, and R. N. Baral, "SRR inspired microstrip patch antenna array," Progress In Electromagnetics Research C, Vol. 58, No. 8, 89-96, 2015.
doi:10.2528/PIERC15052501

22. Arora, C., S. S. Pattnaik, and R. N. Baral, "Microstrip patch antenna array with metamaterial ground plane for Wi-MAX applications," Proc. of the Springer Second International Conference on Computer and Communication Technologies (IC3T-2015), 665-672, India, 2015.

23. Arora, C., S. S. Pattnaik, and R. N. Baral, "Metamaterial superstrate for performance enhancement of microstrip patch antenna array," 3rd International Conference on Signal Processing and Integrated Networks (SPIN-2016), 775-779, India, 2016.
doi:10.1109/SPIN.2016.7566804

24. Garg, R., P. Bhartia, I. Bhal, and A. Ittipiboon, Microstrip Antenna Design Handbook, Artech House, Boston, UK, 2001.

25. Balanis, C. A., Modern Antenna Handbook, John Wiley & Sons, New York, USA, 2011.

26. Pozar, D. M., "Microwave Engineering," John Wiley & Sons, 2008.

27. Joshi, J. G., S. S. Pattnaik, S. Devi, and M. R. Lohokare, "Frequency switching of electrically small patch antenna using metamaterial loading," Indian J. Radio Sp. Phys., Vol. 40, No. 3, 159-165, 2011.

28. Joshi, J. G., S. S. Pattnaik, and S. Devi, "Geo-textile based metamaterial loaded wearable microstrip patch antenna," International J. Microw. Optical Technology, Vol. 8, No. 1, 25-33, 2013.