Vol. 58
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2017-07-13
Study of Effect of Numerical Breast Phantom Heterogeneity on Dielectric Profile Reconstruction Using Microwave Imaging
By
Progress In Electromagnetics Research M, Vol. 58, 135-145, 2017
Abstract
Human breast is a heterogeneous medium for microwave signal. Breast cancer detection using microwave imaging is done based on signal scattered by breast tissues at different frequencies. Wave propagation direction is extremely important in heterogeneous medium like human breast. In this paper, the effect of wave propagation direction on the dielectric profile reconstruction is simulated in the presence of noise. X and Y directed transverse electric (TE) waves are considered for numerical breast phantom heterogeneity exploitation. Wave propagating in Y direction results into better dielectric profile reconstruction than X directed wave. Signal to noise ratio is very crucial for microwave imaging because information resides in low power scattered electric signal. Results show that SNR of at least 30 dB is required to detect cancer by solving extremely under-determined system of scattering equations.
Citation
Hardik N. Patel, and Deepak Ghodgaonkar, "Study of Effect of Numerical Breast Phantom Heterogeneity on Dielectric Profile Reconstruction Using Microwave Imaging," Progress In Electromagnetics Research M, Vol. 58, 135-145, 2017.
doi:10.2528/PIERM17041302
References

1. Yee, K., "Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media," IEEE Transactions on Antennas and Propagation, Vol. 14, No. 3, 302-307, 1996.

2. Taflove, A., "Application of the finite-difference time-domain method to sinusoidal steady-state electromagnetic-penetration problems," IEEE Transactions on Electromagnetic Compatibility, Vol. 22, No. 3, 191-202, 1980.
doi:10.1109/TEMC.1980.303879

3. Hagness, S. C., A. Taflove, and J. E. Bridges, "Two-dimensional FDTD analysis of a pulsed microwave confocal system for breast cancer detection: Fixed-focus and antenna-array sensors," IEEE Transactions on Biomedical Engineering, Vol. 45, No. 12, 1470-1479, 1998.
doi:10.1109/10.730440

4. Bond, E. J., X. Li, S. C. Hagness, and B. D. Van Veen, "Microwave imaging via space-time beamforming for early detection of breast cancer," IEEE Transactions on Antennas and Propagation, Vol. 51, No. 8, 1690-1705, 2003.
doi:10.1109/TAP.2003.815446

5. Li, X., S. K. Davis, S. C. Hagness, D. W. Van der Weide, and B. D. Van Veen, "Microwave imaging via space-time beamforming: Experimental investigation of tumor detection in multilayer breast phantoms," IEEE Transactions on Microwave Theory and Techniques, Vol. 52, No. 8, 1856-1865, 2004.
doi:10.1109/TMTT.2004.832686

6. Lazebnik, M., L. McCartney, D. Popovic, C. B. Watkins, M. J. Lindstrom, J. Harter, S. Sewall, A. Magliocco, J. H. Booske, M. Okoniewski, and S. C. Hagness, "A large-scale study of the ultrawideband microwave dielectric properties of normal breast tissue obtained from reduction surgeries," Physics in Medicine and Biology, Vol. 52, No. 10, 2637, 2007.
doi:10.1088/0031-9155/52/10/001

7. Lazebnik, M., D. Popovic, L. McCartney, C. B. Watkins, M. J. Lindstrom, J. Harter, S. Sewall, T. Ogilvie, A. Magliocco, T. M. Breslin, and W. Temple, "A large-scale study of the ultrawideband microwave dielectric properties of normal, benign and malignant breast tissues obtained from cancer surgeries," Physics in Medicine and Biology, Vol. 52, No. 20, 6093, 2007.
doi:10.1088/0031-9155/52/20/002

8. Lazebnik, M., M. Okoniewski, J. H. Booske, and S. C. Hagness, "Highly accurate Debye models for normal and malignant breast tissue dielectric properties at microwave frequencies," IEEE Microwave and Wireless Components Letters, Vol. 17, No. 12, 822-824, 2007.
doi:10.1109/LMWC.2007.910465

9. Zastrow, E., S. K. Davis, M. Lazebnik, F. Kelcz, B. D. Van Veen, and S. C. Hagness, "Development of anatomically realistic numerical breast phantoms with accurate dielectric properties for modeling microwave interactions with the human breast," IEEE Transactions on Biomedical Engineering, Vol. 55, No. 12, 2792-2800, 2008.
doi:10.1109/TBME.2008.2002130

10. Shea, J. D., P. Kosmas, S. C. Hagness, and B. D. Van Veen, "Three-dimensional microwave imaging of realistic numerical breast phantoms via a multiple-frequency inverse scattering technique," Medical Physics, Vol. 37, No. 8, 4210-4226, 2010.
doi:10.1118/1.3443569

11. Colgan, T. J., S. C. Hagness, and B. D. Van Veen, "A 3-D level set method for microwave breast imaging," IEEE Transactions on Biomedical Engineering, Vol. 62, No. 10, 2526-2534, 2015.
doi:10.1109/TBME.2015.2435735

12. Jesinger, R. A., "Breast anatomy for the interventionalist," Techniques in Vascular and Interventional Radiology, Vol. 17, No. 1, 3-9, 2014.
doi:10.1053/j.tvir.2013.12.002

13. Rubk, T., P. M. Meaney, P. Meincke, and K. D. Paulsen, "Nonlinear microwave imaging for breast-cancer screening using Gauss-Newton’s method and the CGLS inversion algorithm," IEEE Transactions on Antennas and Propagation, Vol. 55, No. 8, 2320-2331, 2007.
doi:10.1109/TAP.2007.901993

14. Bourqui, J. and E. C. Fear, "Biological tissues assesment using transmitted microwave signals," 2014 8th European Conference on Antennas and Propagation (EuCAP), IEEE, 2014.

15. Bourqui, J., J. Garrett, and E. Fear, "Measurement and analysis of microwave frequency signals transmitted through the breast," Journal of Biomedical Imaging, 2012.

16. Gedney, S. D., "An anisotropic perfectly matched layer-absorbing medium for the truncation of FDTD lattices," IEEE Transactions on Antennas and Propagation, Vol. 44, No. 12, 1630-1639, 1996.
doi:10.1109/8.546249

17. Taflove, A. and S. C. Hagness, Computational Electrodynamics, Artech House, 2005.

18. El-Shenawee, M. and E. L. Miller, "Spherical harmonics microwave algorithm for shape and location reconstruction of breast cancer tumor," IEEE Transactions on Medical Imaging, Vol. 25, No. 10, 1258-1271, 2006.
doi:10.1109/TMI.2006.881377