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Study of Effect of Numerical Breast Phantom Heterogeneity
on Dielectric Profile Reconstruction Using Microwave Imaging

Hardik N. Patel* and Deepak K. Ghodgaonkar

Abstract—Human breast is a heterogeneous medium for microwave signal. Breast cancer detection
using microwave imaging is done based on signal scattered by breast tissues at different frequencies.
Wave propagation direction is extremely important in heterogeneous medium like human breast. In this
paper, the effect of wave propagation direction on the dielectric profile reconstruction is simulated in the
presence of noise. X and Y directed transverse electric (TE) waves are considered for numerical breast
phantom heterogeneity exploitation. Wave propagating in Y direction results into better dielectric
profile reconstruction than X directed wave. Signal to noise ratio is very crucial for microwave imaging
because information resides in low power scattered electric signal. Results show that SNR of at least
30 dB is required to detect cancer by solving extremely under-determined system of scattering equations.

1. INTRODUCTION

Microwave imaging of breast for tumor detection is a very promising technique. It has evolved faster
in last three decades due to rapid increase in computational capability. Low power microwave signal is
incident on breast, and according to dielectric profile of breast tissues, the incident wave is scattered
by them. These scattered field measurements can be done practically or theoretically. Theoretical
measurements are often known as forward simulation. Once scattered field at antennas is known,
unknown dielectric profiles of breast tissues are determined by solving inverse scattering problem.

In this paper, the effect of wave propagation on dielectric profile reconstruction is simulated in
the presence of noise. Transverse electric wave is considered in X and Y directions for numerical
breast phantom heterogeneity exploitation. X directed TE wave has electric field components in Y , Z
directions and all magnetic field components. Y directed TE wave has electric field components in X, Z
directions and all magnetic field components. FDTD implementation basics are covered in [1, 2]. FDTD
confocal system is first applied to breast cancer detection in [3]. Space time beam forming method
is given for early breast cancer detection [4]. Experimental setup for multi-layer breast phantom is
described in [5]. Complex permittivity of normal breast tissues obtained from reduction surgeries are
measured in [6] for 0.5 GHz–20 GHz. Complex permittivity of normal, benign, and malignant breast
tissues obtained from reduction surgeries are measured in [7] for 0.5 GHz–20 GHz. Breast tissues are
polarized due to incident microwave signal. Breast tissues permittivity is a function of frequency which
leads to dispersion. This effect is best described by Debye model. Debye models for healthy and
malignant breast tissues are given in [8]. Anatomically realistic breast phantoms are used in this
paper [9]. Numerical breast phantoms are available in the repository of University of Wisconsin [9].
Three-dimensional microwave imaging using multi-frequency inverse scattering technique is given with
great detail in [10]. It also describes global optimization technique conjugate gradient to solve inverse
scattering problem. Inverse scattering problem of microwave breast imaging is solved using 3D level
set algorithm in [11]. This algorithm is computationally efficient as compared to adjoint method. The
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research works of [10] and [11] have considered only Z directed source to make the calculation of
Green’s function simple. They have not considered X and Y directed sources. We are claiming that
source direction also affects the reconstruction of dielectric properties. Source direction is important
because of breast heterogeneity. This paper is a simulation based study of effect of numerical breast
phantom heterogeneity on reconstruction of breast dielectric profile. Breast anatomy is given in [12],
which clearly supports our assumption of considering only fibro-glandular and fatty (adipose) tissues in
this study. Gauss-Newton and CGLS iterative algorithms are given in [13], which do not use any shape
related parameters like level set functions. Level set functions are useful in the 3D reconstruction of
breast tissues. The above algorithms do not reconstruct tissues’ distribution effectively. Measurement
and analysis of microwave signal transmission and reflection due to breast are given in [14, 15]. The
reflection and transmission coefficient results of [14] and [15] are quite motivating. These results clearly
show the matching between simulation and measurement. Our reflection coefficient results are quite
good as compared to simulation results of [14, 15]. UPML equations are derived in [16] with all necessary
details. These equations are used in PML region of this study. FDTD parameters are calculated using
the equations given in [17]. Breast tumor location and shape reconstruction are done using gradient
descent iterative algorithm in [18]. Shape reconstruction of [18] is also poor.

In this paper, effect of numerical breast phantom heterogeneity on dielectric profile reconstruction
using microwave imaging is simulated. Numerical breast phantom is heterogeneous medium, so reflected
power is different in different directions. Electric field update equations for numerical breast phantom
region and perfectly matched layer region are different. Polarization and dispersion effects are considered
only for numerical breast phantom using Debye model. Numerical breast phantom is immersed in oil
medium to get best matching conditions. Forward 3D FDTD total field/scatter field (TF/SF) simulation
is done to calculate normalized reflected power over 0.5 GHz to 2.5 GHz. Now, noise is added to the
total electric field, and inverse problem is formulated. The formulated inverse problem is solved using
3D level set based gradient descent method. Next sections are dielectric properties of breast tissues,
numerical breast phantom and antenna placement surrounding breast, electric field update equations for
forward simulation, inverse problem formulation in frequency domain, simulation parameters, results,
and conclusion.

1.1. Dielectric Properties of Breast Tissues

Breast anatomy is extremely important for understanding from imaging point of view. Breast anatomy
is covered with great detail in [12] for researchers. Breast consists of skin layer, fatty tissue layer, fibro-
glandular tissues, chest wall (ribs and pectoral muscles), and blood vessels. Coopers ligament and lymph
nerves are present in the above tissues. Tissues are formed by same type of cells. The dielectric properties
of healthy breast tissues are different at microwave frequencies [6]. Complex relative permittivity of
breast tissues is a function of frequency which generates dispersion. Dispersive nature of breast tissues
is easily incorporated using Debye model. Single pole Debye model is given below.

ε(ω) = ε∞ +
Δε

jωτ
+

σs

jωε0
(1)

In Eq. (1), ε∞ is the infinite frequency permittivity, Δε the difference between static permittivity (εs)
and infinite frequency permittivity (ε∞), σs the static conductivity, and τ the relaxation time constant
which is 15 ps for all breast tissues. Relaxation time constant is spatially invariant. In order to reduce
number of variables per voxel, τ is fixed at 15 ps. This assumption is valid because of minor variations
in τ throughout the imaging domain for 0.5 GHz to 2.5 GHz frequency range.

1.2. Numerical Breast Phantom and Antenna Placement Surrounding Breast

Simulation is done using class 3 numerical breast phantom developed in [9]. Y -Z, X-Z, and X-Y views
are shown in Fig. 1.

White color represents fibro-glandular tissues, and black or gray color represents adipose tissues.
MRI derived numerical breast phantom is used to make simulation more realistic. Fig. 2 shows antenna
placement surrounding numerical breast phantom. There are five rings of antennas around numerical
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Figure 1. Y -Z, X-Z and X-Y view of class 3 MRI derived numerical breast phantom.

Figure 2. Antenna placement surrounding the numerical breast phantom.

breast phantom. Each ring has eight infinitesimal dipoles of area 2 cm×2 cm, which lead to 40 antennas
in the system.

2. ELECTRIC FIELD UPDATE EQUATIONS FOR FORWARD SIMULATION

Electric field update equations for numerical breast phantom region and PML region are given in this
section.

2.1. Electric Field Update Equations for Numerical Breast Phantom Region

Maxwell’s equation is given by Eq. (2) after incorporating Debye model in it [17].

�∇× �H = ε0ε∞jω �E + σs
�E + jωε0

Δε

1 + jωτ
�E (2)

In Eq. (2), �H is the magnetic field intensity and �E the electric field intensity. Equation (2) is converted
into time domain using FDTD. Now applying simple algebra, Equation (3) is obtained.

�Et+Δt = me1 · �Et + me2 ·
[(

2Δx · �∇× �H
)
−

(
η0 · (1 + mj1) · Δx · �JP

)]
(3)

In Eq. (3), �Et+Δt is the electric field intensity at current time step, �Et the electric field intensity at
previous time step, �∇× �H the curl of magnetic field intensity, �JP the polarization current density, and
Δx the size of voxel in x direction. Coefficient mj1 is given by Eq. (7). Coefficient me1 is given by
Eq. (4).

me1 =
1 − σsΔt

2ε0ε∞
+

mj2 · Δt

2ε0ε∞Δx

1 +
σsΔt

2ε0ε∞
+

mj2 · Δt

2ε0ε∞Δx

(4)
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In Eq. (4), Δt is the time step. Coefficient me2 is given by Eq. (5). Coefficient mj2 is given by Eq. (8).

me2 =
c0Δt

2Δx · ε∞
(

1 +
σsΔt

2ε0ε∞
+

mj2 · Δt

2ε0ε∞Δx

) (5)

In Eq. (5), c0 is the speed of light. Polarization current density update equation is given by Eq. (6).
Equations (3), (4) and (5) are implemented for x, y and z components of electric field vector.

�J t+Δt
P = mj1 · �J t

P +
mj2 ·

(
�Et+Δt − �Et

)
Δx

(6)

In Equation (6), �J t+Δt
P is the polarization current density at current time step and �J t

P the polarization
density at previous time step. Coefficient mj1 is given by Eq. (7).

mj1 =
1 − 1

2Nt

1 +
1

2Nt

(7)

In Eq. (7), relaxation time constant τ = NtΔt. Coefficient mj2 is given by Eq. (8).

mj2 =
ε0ΔεΔx

NtΔ ·
(

1 +
1

2Nt

) (8)

Equations (6), (7) and (8) are implemented for x, y and z components of the polarization current density
vector. Polarization current density vector is updated before updating electric field vector.

2.2. Electric Field Update Equations for PML Region

Electric field update equation derivation for PML region is given in [16, 17]. Electric field update
equation for PML region is given by Eq. (9).

�Dt+Δt = mdx1 · �Dt + mdx2 ·
(

�∇× �H
)

x
+ mdx3 · (Ich)x + mdx4 · (ID)x (9)

In Equation (9), �Dt+Δt is the electric field density (x component) at current time step, �Dt the electric
field density (x component) at previous time step, (�∇ × �H)x the x component of curl of vector H,
(Ich)x the x component of integration of curl of vector H, and (ID)x the x component of integration
of electric field density vector D. Coefficient mdx0 is given by Eq. (10).

mdx0 =
1

Δt
+

σy + σz

2ε0
+

σy · σz · Δt

4ε2
0

(10)

In Equation (10), conductivities in y and z directions are represented by σy and σz. These conductivity
values are non-zero only in the PML region. Sometimes they are known as fictitious conductivity.
Coefficient mdx1 is given by Eq. (11).

mdx1 =
1

mdx0

(
1

Δt
− σy + σz

2ε0
− σy · σz · Δt

4ε2
0

)
(11)

Coefficient mdx2 is given by Eq. (12).
mdx2 =

c0

mdx0
(12)

In Equation (12), c0 is the speed of light. Coefficient mdx3 is given by Eq. (13).

mdx3 =
c0 · Δt · σx

mdx0 · ε0
(13)

In Equation (13), σx is the x component of conductivity. Coefficient mdx4 is given by Eq. (14).

mdx4 =
Δt · σy · σz

mdx0 · ε2
0

(14)

Equations (9) to (14) are implemented for x, y and z components of electric field density vector D in
PML region.
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3. INVERSE PROBLEM FORMULATION IN FREQUENCY DOMAIN

The total electric field is known at the antenna locations due to forward simulation. Scattered field at
antenna locations is calculated using Eq. (15).

�Es(�r) =
∫∫∫

G(�r,�r′) · �J(�r′)dv′ (15)

In Eq. (15), �Es(�r) is the scattered electric field at antenna locations �r, G(�r,�r′) the Green’s function for
homogeneous background medium, and �J(�r′) the polarization current density. Equation (16) is obtained
by substituting polarization current density into Eq. (15).

�Es(�r) = ω2μ

∫∫∫
G(�r,�r′) · �Et(�r′)

[
ε(�r′) − εb(�r)

]
dr′ (16)

In Eq. (16), ε(�r′) − εb(�r) is permittivity contrast (with respect to homogeneous background medium),
and �Et(�r′) is the total electric field intensity at location �r′. Linear approximation of scattering equation
of Eq. (16) is obtained using [10]. Numerical breast phantom is discritized in K voxels. There are 40
antennas surrounding breast as shown in Fig. 2. Each antenna works as a transmitter or a receiver.
One antenna transmits microwave signal on breast while other antennas receive scattered signal due
to breast tissues. This process is repeated for each antenna present in the system. Let us consider
that there are N antennas in the system. There is F number of frequencies. Ideally, there are N2F
measurements possible. Antenna is reciprocal so some measurements can be neglected. There are only
(N(N − 1)/2)F measurements possible after removing redundancy. There are N − 1 receivers when
the first antenna transmits. There are N − 2 receivers when the second antenna transmits. By this
way, there are channels among transmitters and receivers. By considering N antennas, D number of
channels, F number of frequencies, and K voxels, Eq. (17) is obtained.

με0

D∑
p=1

F∑
l=1

K∑
j=1

ω2
l

(
(δ(ε∞))j +

(δ(Δε))j
1 + jωlτ

+
(δ(σs))j

jωε0

)
·

(
Et

x(�rj |�rm, ωl) · IGx(�rn|�rj , ωl)
)
p

(17)

In Eq. (17), δ(ε∞) = (ε∞)k − (ε∞)b is the difference between the kth voxel infinite frequency
permittivity and background medium infinite frequency permittivity, and δ(Δε) = (Δε)k − (Δε)b and
δ(σs) = (σs)k − (σs)b are defined the same as above. In Eq. (17), Et

x(�rj |�rm, ωl) is the x direction electric
field present at the jth voxel location due to the transmitter at location �rm for angular frequency
ωl; IGx(�rn|�rj , ωl) is the x direction component of the integration of the Green’s function at angular
frequency ωl; �rn represents receiver location; p represents particular channel number. Now, Eq. (17)
can be represented in the matrix form as shown by Eq. (18). By comparing Eq. (18) with Ax = b, A is
of size 2MF ×3K, where Re(·) represents real part; Im(·) represents imaginary part; size of x is 3K×1;
size of b is 2MF × 1. There are total 2MF equations and 3K unknowns. In our system, there are 40
antennas, number of frequencies F = 18, and K = 64000.⎡

⎢⎢⎢⎢⎢⎣

Re(A∞
1 ) Re(AΔ

1 ) Re(Aσ
1 )

Im(A∞
1 ) Im(AΔ

1 ) Im(Aσ
1 )

...
Re(A∞

M ) Re(AΔ
M ) Re(Aσ

M )
Im(A∞

M ) Im(AΔ
M ) Im(Aσ

M )

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎣ δ(ε∞)

δ(Δε)
δ(σs)

⎤
⎦ =

⎡
⎢⎢⎢⎢⎢⎣

Re(Es
1)

Im(Es
1)

...
Re(Es

M )
Im(Es

M )

⎤
⎥⎥⎥⎥⎥⎦

(18)

There are 28,080 equations and 192000 unknowns in our system. It means that this approximated
linear system of Eq. (18) is underdetermined. In Eq. (18), each element is represented by the matrix of
Eq. (19), and scattered field is represented by Eq. (20).

Ap
d =

⎡
⎢⎣

Cp(ω1)
[
ad

1(ω1) . . . ad
k(ω1)

]
...

Cp(ωF )
[
ad

1(ωF ) . . . ad
k(ωF )

]
⎤
⎥⎦ (19)
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where, ad
k(ω1) = ω2

1με0 · Et
x(�rj |�rm, ω1) · IGx(�rn|�rj , ω1) and d represents particular channel number,

C∞(ω) = 1, CΔ(ω) = (1 + jωτ)−1, Cσ(ω) = (jωε0)−1

Equation (21) represents cost function. In Eq. (21), F is the number of frequencies, M the number of
measurements, �rn the receiver location for particular channel, and ωf the angular frequency. Scattered
electric field matrix of Eq. (20) is known due to forward simulation. Left-hand side matrix A of
Eq. (18) is also known. Permittivity contrast profile column matrix x is only unknown in Eq. (18).
System of scattering equations is converted into matrices as shown by Equations (17) and (18). The
unknown vector of Equation (18) is in terms of Debye parameters. We are dealing with real numbers
in this type of modelling. Real number operations are faster than complex number operations, so the
system represented by Eq. (18) is computationally efficient. Ultimately, we reconstruct Debye parameter
unknowns instead of complex permittivity reconstruction.

Es
d =

⎡
⎢⎣

Et
x (�rn|�rm, ω1) − Ei

x (�rn|�rm, ω1)
...

Et
x (�rn|�rm, ωF ) − Ei

x (�rn|�rm, ωF )

⎤
⎥⎦ (20)

C(ε) =
1
2

F∑
f=1

M∑
n=1

∣∣Et
m (�rn, ωf ) − Et

r

(
�rn, ωf , ε

(
�r′

))
(21)

In this paper, Eq. (21) is minimized using 3D level set based gradient descent algorithm [11].

3.1. Noise Consideration

Additive white Gaussian noise is added in scattered field using Eq. (22). After adding noise, inverse
problem is solved.

Ax = b + n (22)

In above equation, n is the AWGN noise vector with different signal to noise ratios. SNR varies from
10 db to 50 db. RMSE in Debye parameters is calculated using Eq. (23).

RMSE =

√√√√√√
K∑

i=1

(εi − ε̂i)2

K
(23)

In Eq. (23), εi is the Debye parameter original value of the ith voxel, and ε̂i is the Debye parameter
reconstructed value of the ith voxel. K is the total number of voxels used in model.

4. SIMULATION PARAMETERS

Debye parameters’ values are given for different breast tissues in Table 1. These values are valid for
0.5 GHz to 3 GHz. For simplicity, only two major types of tissues are considered in class 3 numerical
breast phantom. Tumour is not there in MRI derived numerical breast phantom used in this study, so
tumour location is assumed here. Tumour is assumed in glandular tissues because it starts in this type
of tissues.

Coronal cross sections of numerical breast phantom with ε∞, Δε and σs original profiles are shown
in Figs. 3, 4, and 5, respectively. Malignant tumor is assumed in the fibro-glandular tissues. Fig. 3,
Fig. 4, and Fig. 5 profiles are used to get scattered field at antenna locations. Noise is added to these
field values before solving inverse scattering problem.

5. RESULTS

Normalized reflected power vs. frequency graph for different directions is shown in Fig. 6. It clearly
shows several reflected power peaks at different frequencies. 3D FDTD simulation is done over 18 equally
spaced discrete frequencies between 500 MHz and 2.5 GHz. Reconstructed Debye parameters profiles
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Table 1. Debye parameters’ values for different breast tissues.

Tissues ε∞ Δε σs (s/m)
Adipose (fatty) 4.09 3.54 0.0842
Fibro-glandular 18.6 35.6 0.817

Skin 15.3 24.8 0.741
Tumor (assumed) 23.2 41 0.93

Immersion medium 2.6 0 0

(a) (b)

(c) (d)

Figure 3. Coronal cross section of class 3
breast phantom with original profile of ε∞
at (a) 1.5 cm, (b) 3 cm, (c) 4.5 cm, (d) 6 cm.
(Dark pink dot of (b) indicates malignant
tumor tissues).

(a) (b)

(c) (d)

Figure 4. Coronal cross section of class 3 breast
phantom with original profile of Δε at (a) 1.5 cm,
(b) 3 cm, (c) 4.5 cm, (d) 6 cm. (Dark pink dot of (b)
indicates malignant tumor tissues).

(a) (b)

(c) (d)

Figure 5. Coronal cross section of class 3 breast phantom with original profile of σs at (a) 1.5 cm, (b)
3 cm, (c) 4.5 cm, (d) 6 cm. (Dark pink dot of (b) indicates malignant tumor tissues.
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Figure 6. Normalized reflected power vs. frequency for different directions.

(c) (d)

(b)(a)

Figure 7. Coronal cross section of class 3 breast
phantom with reconstructed profile of ε∞ for X
direction wave propagation at (a) 1.5 cm, (b) 3 cm,
(c) 4.5 cm, (d) 6 cm. (SNR 40 dB).

(a) (b)

(c) (d)

Figure 8. Coronal cross section of class 3 breast
phantom with reconstructed profile of Δε for X
direction wave propagation at (a) 1.5 cm, (b) 3 cm,
(c) 4.5 cm, (d) 6 cm. (SNR 40 dB).

for x direction wave propagation are shown in Fig. 7, Fig. 8 and Fig. 9, respectively. Reconstructed
Debye parameters profiles for y direction wave propagation are shown in Fig. 10, Fig. 11 and Fig. 12,
respectively.

By comparing Fig. 7 with Fig. 3, it is clear that in the reconstruction of ε∞ profile, its shape and
values both are poor for x direction wave propagation. By comparing Fig. 8 with Fig. 4, it is clear that
in the reconstruction of Δε profile, its shape and values both are poor for x direction wave propagation.

By comparing Fig. 9 with Fig. 5, it is clear that in the reconstruction of σs profile, its shape and
values both are poor for x direction wave propagation. By comparing Fig. 10 with Fig. 3 and Fig. 7,
it is clear that in the reconstruction of ε∞ profile, its shape and values both are better for y direction
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(a) (b)

(c) (d)

Figure 9. Coronal cross section of class 3 breast
phantom with reconstructed profile of σs for X
direction wave propagation at (a) 1.5 cm, (b) 3 cm,
(c) 4.5 cm, (d) 6 cm. (SNR 40 dB).

(a) (b)

(c) (d)

Figure 10. Coronal cross section of class 3
breast phantom with reconstructed profile of ε∞
for Y direction wave propagation at (a) 1.5 cm,
(b) 3 cm, (c) 4.5 cm, (d) 6 cm. (SNR 40 dB).

(a) (b)

(c) (d)

Figure 11. Coronal cross section of class 3
breast phantom with reconstructed profile of Δε
for Y direction wave propagation at (a) 1.5 cm,
(b) 3 cm, (c) 4.5 cm, (d) 6 cm. (SNR 40 dB).

(a) (b)

(c) (d)

Figure 12. Coronal cross section of class 3 breast
phantom with reconstructed profile of σs for Y
direction wave propagation at (a) 1.5 cm, (b) 3 cm,
(c) 4.5 cm, (d) 6 cm. (SNR 40 dB).

propagation than for x direction propagation. By comparing Fig. 11 with Fig. 4 and Fig. 8, it is clear
that in the reconstruction of Δε profile, its shape and values both are better for y direction propagation
than for x direction propagation.

By comparing Fig. 12 with Fig. 5 and Fig. 9, it is clear that in the reconstruction of σs profile,
its shape and values both are better for y direction propagation than for x direction propagation.
Fig. 13 shows RMSE in ε∞ vs. SNR for X and Y directions wave propagation. Better reconstruction
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Figure 13. RMSE in ε∞ vs. SNR for X and Y
directions wave propagation.

Figure 14. RMSE in Δε vs. SNR for X and Y
directions wave propagation.

Figure 15. RMSE in σs vs. SNR for X and Y directions wave propagation.

of ε∞ profile is achieved in the presence of noise for Y direction wave propagation than x direction
wave propagation. Fig. 14 shows RMSE in Δε vs. SNR for X and Y direction wave propagations.
Better reconstruction of Δε profile is achieved in the presence of noise for Y direction wave propagation
than x direction wave propagation. Fig. 15 shows RMSE in σs vs. SNR for X and Y direction wave
propagations. Better reconstruction of σs profile is achieved in the presence of noise for Y direction
wave propagation than x direction wave propagation.

6. CONCLUSION

Results clearly show that y direction wave propagation through numerical breast phantom is better
than x direction propagation. SNR of at least 30 dB is required to detect tumour properly.
Breast heterogeneity varies with patients, so direction dependent analysis is extremely important.
Reconstruction performance varies with wave direction due to numerical breast phantom heterogeneity.
The effect of noise on dielectric reconstruction is less for Y direction wave propagation. The reason
of better dielectric reconstruction for y direction is more reflected power in that direction. This study
suggests that SNR of at least 30 dB is required to detect breast tumour properly using this reconstruction
technique.
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