Vol. 51
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2016-10-14
Characterization of Linear Electromagnetic Observables in Stochastic Field-to-Wire Couplings
By
Progress In Electromagnetics Research M, Vol. 51, 33-50, 2016
Abstract
This article presents a method to characterize stochastic observables defined by induced surface currents and fields in electromagnetic interactions with uncertain configurations. As the covariance operators of the stochastic distributions and fields are not compact, a strict Karhunen-Loeve (KL) approach is not possible. Instead, we apply a point-spectrum regularization by expanding the stochastic quantities on a finite-element-like basis. The coefficients of the KL expansion are approximated analytically in a polynomial-chaos (PC) expansion. The novelty of our approach resides in its ability to handle multiple PC expansions simultaneously and determine the orders of the KL and PC expansions adaptively. Thismethod is illustrated through the example of the voltage induced at the port of a random thin-wire frame illuminated by random plane waves. The results show the accuracy and computational efficiency of the proposed method, which provides a complete characterization of the randomness of the observable.
Citation
Ousmane Oumar Sy, Martijn Constant van Beurden, and Bastiaan L. Michielsen, "Characterization of Linear Electromagnetic Observables in Stochastic Field-to-Wire Couplings," Progress In Electromagnetics Research M, Vol. 51, 33-50, 2016.
doi:10.2528/PIERM16063006
References

1. Holland, R. and R. St. John, Statistical Electromagnetics, CRC Press, 1999.

2. Meng, Y. and Y. Shan, "Measurement uncertainty of complex-valued microwave quantities," Progress In Electromagnetics Research, Vol. 136, 421-433, 2013.
doi:10.2528/PIER12112402

3. Michielsen, B. and C. Fiachetti, "Covariance operators, Green functions, and canonical stochastic electromagnetic fields," Radio Science, Vol. 40, No. 5, RS5001.1-RS5001.12, 2005.
doi:10.1029/2004RS003086

4. Lemoine, C., E. Amador, and P. Besnier, "On the K-factor estimation for Rician channel simulated in reverberation chamber," IEEE Trans. on Antennas and Propagation, Vol. 59, No. 3, 1003-1012, 2011.
doi:10.1109/TAP.2010.2103003

5. Phelps, R., M. Krasnicki, R. Rutenbar, L. Carley, and J. Hellums, "Anaconda: Simulation-based synthesis of analog circuits via stochastic pattern search," IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, Vol. 19, No. 6, 703-717, Jun. 2000.
doi:10.1109/43.848091

6. Ghanem, R. and P. Spanos, Stochastic Finite Elements: A Spectral Approach, Dover Publications, 1991.
doi:10.1007/978-1-4612-3094-6

7. Vaessen, J., O. Sy, M. van Beurden, and A. Tijhuis, "Monte-Carlo method applied to a stochastically varying wire above a PEC ground plane," Proceedings EMC Europe Workshop, Paris, 1-5, 2007.

8. Yucel, A. C., H. Bagci, and E. Michielssen, "An adaptive multi-element probabilistic collocation method for statistical EMC/EMI characterization," IEEE Trans. Electromag. Compat., Vol. 55, No. 6, 1154-1168, Dec. 2013.
doi:10.1109/TEMC.2013.2265047

9. Li, P. and L. J. Jiang, "Uncertainty quantification for electromagnetic systems using ASGC and DGTD method," IEEE Trans. Electromag. Compat., Vol. 57, No. 4, 754-763, Aug. 2015.
doi:10.1109/TEMC.2015.2403304

10. Rumsey, V. H., "Reaction concept in electromagnetic theory," Physical Review, Vol. 94, No. 6, 1483-1491, 1954.
doi:10.1103/PhysRev.94.1483

11. Sy, O., M. van Beurden, B. Michielsen, J. Vaessen, and A. Tijhiuis, "Second-order statistics of complex observables in fully stochastic electromagnetic interactions: Applications to EMC," Radio Science, Vol. 45, No. RS4004, Jul. 2010.

12. Papoulis, A., Probability, Random Variables and Stochastic Processes, McGraw-Hill Companies, Feb. 1991.

13. Soize, C. and R. Ghanem, "Physical systems with random uncertainties: Chaos representations with arbitrary probability measure," SIAM J. Sci. Comput., Vol. 26, No. 2, 395-410, 2005.
doi:10.1137/S1064827503424505

14. Debusschere, B. J., H. N. Najm, P. P. Pébay, O. M. Knio, R. G. Ghanem, and O. P. L. Maitre, "Numerical challenges in the use of polynomial chaos representations for stochastic processes," SIAM J. Sci. Comput., Vol. 26, No. 2, 698-719, 2005.
doi:10.1137/S1064827503427741

15. Haarscher, A., P. De Doncker, and D. Lautru, "Uncertainty propagation and sensitivity analysis in ray-tracing simulations," Progress In Electromagnetics Research M, Vol. 21, 149-161, 2011.
doi:10.2528/PIERM11090103

16. Sy, O., M. van Beurden, B. Michielsen, and A. Tijhiuis, "Semi-intrusive quantification of uncertainties in stochastic electromagnetic interactions: Analysis of a spectral formulation," Proc. International Conference on Electromagnetics in Advanced Applications, ICEAA 2009, 2009.

17. Mrozynski, G., V. Schulz, and H. Garbe, "A benchmark catalog for numerical field calculations with respect to EMC problems," Proc. IEEE International Symposium on Electromagnetic Compatibility, Vol. 1, 497-502, 1999.

18. Tijhuis, A. and Z. Peng, "Marching-on-in-frequency method for solving integral equations in transient electromagnetic scattering," IEE Proc. H, Microwaves, Ant. Prop., Vol. 138, No. 4, 347-355, Aug. 1991.
doi:10.1049/ip-h-2.1991.0057

19. Champagne II, N. J., J. T.Williams, and D. R. Wilton, "The use of curved segments for numerically modeling thin wire antennas and scatterers," IEEE Trans. Ant. Prop., Vol. 40, No. 6, 682-689, 1992.
doi:10.1109/8.144603

20. Tesche, F. M., "Comparison of the transmission line and scattering models for computing the NEMP response of overhead cables," IEEE Trans. Electromagn. Compat., Vol. 34, No. 2, 93-99, 1992.
doi:10.1109/15.135621

21. Li, P., Y. Shi, L. J. Jiang, and H. Bagci, "Transient analysis of lumped circuit networks-loaded thin wires by dgtd method," IEEE Trans. Ant. Prop.,, Vol. 64, No. 6, 2358-2369, Jun. 2016.
doi:10.1109/TAP.2016.2543803

22. Rudin, W., Functional Analysis, 2nd Ed., ser. International Series in Pure and Applied Mathematics, McGraw-Hill Inc., 1991.

23. Abramowitz, M. and I. A. Stegun, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, ninth Dover printing, tenth GPO printing ed., 1964.

24. Walters, R. W., "Towards stochastic fluid mechanics via polynomial chaos," 41st AIAA Aerospace Sciences Meeting and Exhibit, Vol. AIAA-2003-0413, 2003.

25. Eadie, W. T., D. Drijard, and F. E. James, Statistical Methods in Experimental Physics, North-Holland Pub. Co., 1971.

26. Gerstner, T. and M. Griebel, "Numerical integration using sparse grids," Numerical Algorithms, Vol. 18, No. 3, 209-232, 1998.
doi:10.1023/A:1019129717644

27. Golub, G. and C. Van Loan, Matrix Computations, ser. J. Hopkins Studies Mathematical Sciences, Johns Hopkins University Press, 1996.

28. Xiu, D. and G. E. Karniadakis, "The Wiener-Askey polynomial chaos for stochastic differential equations," SIAM J. Sci. Comput., Vol. 24, No. 2, 2002.
doi:10.1137/S1064827501387826

29. Steinberg, B. Z., L. B. Felsen, and E. Heyman, "Phase-space beam summation for time-harmonic radiation from large apertures," J. Opt. Soc. Am. A, Vol. 8, No. 1, 41-59, Jan. 1991.
doi:10.1364/JOSAA.8.000041