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Characterization of Linear Electromagnetic Observables in Stochastic
Field-to-Wire Couplings

Ousmane O. Sy1, 3, *, Martijn C. van Beurden1, and Bastiaan L. Michielsen2

Abstract—This article presents a method to characterize stochastic observables defined by induced
surface currents and fields in electromagnetic interactions with uncertain configurations. As the
covariance operators of the stochastic distributions and fields are not compact, a strict Karhunen-
Loève (KL) approach is not possible. Instead, we apply a point-spectrum regularization by expanding
the stochastic quantities on a finite-element-like basis. The coefficients of the KL expansion are
approximated analytically in a polynomial-chaos (PC) expansion. The novelty of our approach resides
in its ability to handle multiple PC expansions simultaneously and determine the orders of the KL and
PC expansions adaptively . This method is illustrated through the example of the voltage induced at the
port of a random thin-wire frame illuminated by random plane waves. The results show the accuracy
and computational efficiency of the proposed method, which provides a complete characterization of
the randomness of the observable.

1. INTRODUCTION

Electronic systems have to properly function in a vast range of operational scenarios. For example,
electronic systems have different compositions due to customer wishes and upgrades over time. This
generates many uncertainties in the operational conditions of the system. Other types of uncertainties
that occur are ageing and drift, production tolerances, and locations of cable trees due to individual
decisions taken by an installer of a system. Under all such conditions, which are partly outside the
control of the manufacturer, the manufacturer has to guarantee safe and proper functioning, as well as
EMC compliance of the system. Since the number of potential scenarios and deviations from the ideal
system is vast, it is rapidly becoming unpractical or impossible to guarantee the proper functioning of
a system based on a limited set of deterministic simulations and well-controlled experiments that are
induced by practical time and budget constraints.

Research in stochastic electromagnetic fields approaches this dilemma from a different perspective.
By introducing uncertainties in a setup from the start, one aims at generating a sufficiently rich
stochastic ensemble that will properly represent the entire range of device variations and operational
conditions [1, 2]. This rationale has been adopted in reverberation-chamber measurements, where a rich
set of electromagnetic fields impinges upon a device under test [3, 4]. A similar train of thoughts can
be observed in the construction of numerical methods for CAD tools [5].

Popular methods to analyze stochastic systems are the Monte-Carlo method and Stochastic
Collocation, both of which use an underlying parameterized deterministic model and a sampling scheme
guided by the assumptions on the probability density functions of the parameters [6–9]. The advantage
is that the deterministic model is tackled with well-established numerical methods and that this model
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can be treated as a black box that produces responses for the sampled parameters. Nevertheless, a
single model evaluation can already be time-consuming and a sampling approach readily requires several
hundreds or thousands of evaluations. Therefore, economizing on the number of model evaluations is
an important aspect in constructing numerical tools for stochastic problems.

In the present paper, we address electromagnetic-scattering problems with stochastic parameters
in both configuration and excitation field. As in previous papers, the Lorentz reciprocity theorem
allows us to compute an observable, e.g., an induced voltage, for multiple excitation fields by solving
a linear system for a single right-hand side per variation in the configuration [10, 11]. To allow for
the computation of an observable for stochastic excitations and simultaneously avoid the construction
of extensive libraries of numerical solutions, we exploit a Karhunen-Loève (KL) decomposition of the
essential stochastic distributions and fields [12, 13]. To ensure that the KL expansion can be derived,
i.e., that the covariance operators of the fields and currents are compact, the stochastic processes are
expanded on finite-element basis functions. The KL decomposition provides a method for determining
the degrees of freedom in the problem while a polynomial-chaos (PC) expansion leads to a rapidly
converging approximation of the observables as functions on the probability space [14, 15]. We apply
the PC expansion semi-intrusively, i.e., instead of applying the PC expansion directly to the induced
voltage, we expand the fields and currents that define the voltage, thereby achieving computational
gains. By aiming to fully characterize the randomness of the observable, this article extends previous
efforts where the semi-intrusive approach was used to determine only the mean and variance of the
observable [3, 16].

The general practice is to truncate the KL expansion based on the decay of the eigenvalues of the
covariance and use a fixed order for the PC expansion based on its variance. Both choices guarantee the
root-mean-square accuracy but not the accuracy of the full distribution. We address these issues by using
a higher-order statistic, viz. the Kolmogorov-Smirnov statistic of a canonical voltage, to jointly and
adaptively determine the orders of the KL and PC expansions. The required steps in the recipe are made
explicit and we demonstrate that the combination of the techniques results in a versatile and powerful
scheme. As such, our algorithm focuses on an adaptive p-refinement of the PC expansion, rather than
adaptive h-refinement methods proposed in the multi-element probabilistic collocation method [8], or
the hierarchical sparse-grid collocation method [9].

The outline of this article is as follows. Section 2 describes the test case used as a prototype to
study linear electromagnetic interactions, i.e., a randomly shaped thin-wire frame connected to a random
impedance and illuminated by plane waves. Section 3 presents the stochastic model that is sought and
built using Karhunen-Loève and polynomial-chaos spectral expansions. The adaptive scheme devised
to ensure the joint convergence of the KL and PC expansions is described in Section 4 and illustrated
in Section 5 through the KLPC expansion of the current flowing on the random thin-wire frame. The
KLPC model is then used in Section 6 to accurately approximate the probability distribution of the
voltage induced at the port of the setup by deterministic or random incident fields. The computational
cost of the KLPC approach is discussed in Section 7.

2. STOCHASTIC LINEAR-INTERACTION PROBLEM

This section describes a stochastic linear electromagnetic interaction problem involving a thin-wire
setup. Thin-wire structures play an important role in antenna theory and in electromagnetic
compatibility (EMC) due to their presence in harnesses and cables that interconnect electronic devices.
At high frequencies, these wires even behave as radiating elements that must be accounted for to
properly describe the total electromagnetic field.

2.1. Definition of the Interaction Geometry

We consider a generic configuration derived from an EMC benchmark [17] and shown in Fig. 1. The
setup, which is considered in free space and in the time-harmonic regime, consists of a perfectly
electrically conducting (PEC) thin-wire frame W with a circular cross-section of diameter a = 1mm
that is negligible compared to the wavelength λ. One of the ports of W is open (left), whereas the other
port (right) is connected to the ground plane via a load Z = R+ jξ ∈ Z ⊂ [0,∞)× R.
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Figure 1. Interaction configuration: perfectly conducting thin-wire frame Wα connected to a load Z
and located above a ground plane, incident field Eβ and observable V induced at the port of Wα.

The shape of W results from the geometrical deformation of a reference transmission line W0

located 5 cm above a PEC ground plane. The axis of W is defined with respect to W0 through the
smooth mapping

τα(r0) = r0 +

⎧⎪⎨
⎪⎩

(αxux + αzuz) sin
(
π
y0 − ym

yM − ym

)
, if y0 ∈ [ym, yM],

0, otherwise,
(1)

for any r0 = (x0, y0, z0) ∈W0, with (ux,uy,uz) the Cartesian basis. The geometrical deformations are
controlled by the vector α = (αx, αz), which belongs to A = Ax×Az, with Ax = Az = [−0.03; 0.03] m.
To mark the dependence of W on α, the deformed wire is written as Wα. The impedance of the wire is
Z = R + jξ with a deterministic resistance R = 50Ω and a reactance ξ ∈ X = [−5, 5]Ω. Geometrical
uncertainties of the setup correspond to an indetermination of α in A, while material uncertainties
translate in an indetermination of ξ in X . The consequences of these uncertainties can be severe when
dealing with a resonant structure such as Wα, as will be shown in Section 2.3.1.

To quantify these uncertainties, a stochastic framework is adopted by gathering the uncertain
parameters of the configuration in the vector γ = (α, ξ) ∈ G = A× X and by regarding the variations
of γ in G as random. Specifically, γ is a random vector, which has mutually statistically independent
components and follows the probability distribution PG that is known a priori or derived from the
observations of realizations of the system.

2.2. Definition of the Incident Field

The externally generated incident field is denoted Eβ where β ∈ B ⊂ R
m gathers parameters such as

the amplitude, polarization and direction of propagation of the field. This field is assumed to have a
plane-wave spectrum, denoted Eβ, with

Eβ : R
3 � r �−→

∫
S

Eβ(ki)e−jki·rd3ki ∈ C
3, (2)

where S =
{

2π
λ ui, with ui ∈ R

3, ‖ui‖ = 1
}

is the set of wavevectors and Eβ(ki) ∈ C
3 is the polarization

vector, with Eβ(ki) · ki = 0, for any ki ∈ S. The support of Eβ in S defines the directions of incidence
(θi, φi) in polar coordinates. For our purposes, the incident fields are assumed to impinge from the
directions (θ, φ) ∈ [0, π/2] × [−π/2, π/2], i.e., S = {(2π/λ)ur(θ, φ), θ ∈ [0, π/2], φ ∈ [−π/2, π/2]},
with

ur(θ, φ) = − (sin θ cosφ ux + sin θ sinφ uy + cos θ uz) . (3)
Uncertainties in Eβ are also handled stochastically by assuming that β is randomly distributed in B
according to a known distribution PB. Since the incident field is generated by sources external to the
scatterer, γ and β are assumed mutually statistically independent.
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2.3. Induced Voltage as Observable

The voltage V induced at the port of the system by Eβ is defined as

V (γ, β) = −
∫

∂Wα

Jγ(r) · Eβ(r)dS(r) ∈ C, (4)

where the distribution Jγ(r) depends solely on γ as it is induced on the mantle of Wα in a transmitting
state, i.e., by a unit current source applied to the port in the absence of Eβ [11]. To accurately account
for the deformation of Wα and the boundary conditions at the load Z, Jγ is computed by solving
the electric-field integral equation (EFIE) associated with the transmitting state. The computation
and solution of the EFIE impedance matrix are carried out efficiently using an approximate-kernel
Pocklington equation [18] and quadratic-segment basis functions [19]. Hence, Jγ is a nonlinear function
of γ, each evaluation of which incurs a given numerical cost. Alternative electromagnetic models could
have been considered, e.g., based on transmission-line theory [20, 21]. However, one must make sure
that these models can properly handle the varying height-above-ground of the thin wire.

2.3.1. Motivation of the Uncertainty Quantification

The electromagnetic behavior of the setup is illustrated in Fig. 2 as a function of frequency for a wire
connected to a resistance Z = 50Ω. The incident field is a parallelly polarized plane wave with an
electric field of amplitude 1 V ·m−1, propagating along the direction (θ = 45◦, φ = −45◦). This graph
shows the amplitude |V | of the induced voltage for the mean configuration αAVG = (0, 0) and the
“extreme” deformations obtained with αMAX = [0.03, 0.03]m and αMIN = −αMAX. The current Jγ is
computed via a method of moments (MoM) by discretizing the axis of the wire into 224 segments. This
produces a uniform mesh with 5 mm long segments.

These plots show resonance peaks in the spectrum of |V |. The effects of the deformations are
noticeable through the shift between the resonance frequencies of αAVG compared to those of αMIN and
αMAX. For instance, at f1 = 1997MHz, if the deformations are ignored, using the response of αAVG

for all configurations can lead to an over-estimation of the voltage by up to 4 dB. Hence, the need for
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Figure 2. Deterministic voltage induced by a parrallelly polarized plane wave at the port of wires
connected to a load Z = 50Ω. The frequency studied in this article is f1 = 1997MHz.



Progress In Electromagnetics Research M, Vol. 51, 2016 37

an uncertainty quantification at such a frequency, which is the frequency considered in the remainder
of the article.

2.3.2. Stochastic Parametrization of the Voltage

Through Eq. (4), the randomness of γ or β induces the randomness of V . However, unlike γ or β, the
probability distribution PV of V is unknown. The aim of the stochastic approach is to characterize or
approximate PV given PG , PB and the dependence of V on (γ, β). Due to the numerical and nonlinear
dependence of V on (γ, β), PV cannot be determined analytically.

The distribution PV can be characterized by a Monte-Carlo (MC) approach, viz. by generating a
large set of samples of V using values of (γ, β) drawn randomly according to PG and PB. Then, this
large dataset can be used to compute statistical moments or approximate the cumulative distribution
function (CDF) of V . However, a drawback of this approach is that whenever either PG or PB changes,
a new MC analysis is required. Second, the generation of a large MC dataset implies the solution of as
many boundary-value problems, which rapidly becomes cumbersome numerically.

To circumvent the first limitation, we reformulate the observable to separate the effects of the
geometrical uncertainties from the uncertainties due to Eβ . Next, we apply a spectral expansion to
express the dependency of V on γ and β explicitly in terms of polynomials, which in turn eases the
statistical processing of V significantly.

2.3.3. Spectral Reformulation of the Observable

Although Eβ is independent of the scattering device, it must still be evaluated over the support of
Jγ , viz. at a point on the mantle of the wire r ∈ ∂Wα, to compute V . Therefore, the geometrical
modifications of the setup also affect Eβ, thereby complicating the characterization of the variations
of Jγ independently from Eβ. This difficulty is avoided by using a spectral definition of V through
Plancherel’s theorem [22, p. 188], i.e.,

V (γ, β) = −
∫
S

Jγ(k) ·E∗
β(k)d3k def= −〈Jγ ;Eβ〉S , (5)

where (∗) is the complex conjugation and Jγ the Fourier transform of Jγ

Jγ : S � k �−→
∫

∂Wα

Jγ(r)e−jk·rdS(r) ∈ C
3. (6)

The advantage of Eq. (5) over Eq. (4) is that the randomness of the system is now entirely contained in
Jγ and can be quantified by characterizing the randomness of Jγ only. The resulting information can
be re-used to obtain statistics of V , regardless of the type of incident field.

3. STOCHASTIC SEMI-INTRUSIVE KLPC MODEL

3.1. Outline of the Method

In this section, we propose a representation of the stochastic observable to highlight the most efficient
way of doing the numerical computations. In the integral representation of Eq. (5), Jγ is a stochastic
field defined by the probability space G and mapping each γ ∈ G to the space of infinitely smooth fields
with their support in S, which is denoted E (S,C3) [22, p.92]. As for Eβ, it is a stochastic generalized
function defined by the probability space B and valued in E ′(S,C3), i.e., the dual space of E (S,C3). The
objective is to have a convenient representation of the objects in the definition of the observable to access
the dependency of the observable on the stochastic parameters (γ, β). This in turn will significantly
ease the evaluation of the statistical properties of V .

We suppose that Jγ has the following approximation

Jγ(k) ≈
N∑

n=0

Jn(k)ρn(γ), ∀γ ∈ G, (7)
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where {Jn}n=0,...,N is a set of deterministic vector fields regular in S and {ρn}n=0,...,N is a set of
orthogonal functions defined on G and which will be approximated via polynomials. This approximation,
which will be obtained by applying Karhunen-Loève (KL) and polynomial-chaos (PC) expansions
described in the next section, yields a model that is henceforth denoted KLPC. Inserting Eq. (7) in (5)
leads to

V (γ, β) ≈
N∑

n=0

ρn(γ)νn(β), with νn(β) = −〈Jn;Eβ〉S . (8)

Equation (8) is already an advantageous representation of the observable when Eβ is cheap to compute,
e.g., when it consists of the sum of a small number of plane waves. Indeed, since {Jn}n=0,...,N

are deterministic, they need to be computed only once and statistical operations only involve the
polynomials that approximate {ρn(γ)}n=0,...,N , which are easy to evaluate. This way of applying the
PC expansion is semi-intrusive, i.e., intrusive with respect to the final observable that is V , and non-
intrusive for Jγ and Eβ as the PC expansion is not applied to the operators that define these two
quantities.

3.2. Stochastic Spectral Model: KLPC Expansion

Without loss of generality, the KLPC expansion is described for Jγ . Since the covariance of Jγ is not
necessarily compact, a Karhunen-Loève decomposition cannot be applied stricto sensu. To sidestep
this issue, a weak formulation is used by expanding the stochastic processes on a set of deterministic
finite-element basis functions, which is denoted H = {h� : S −→ R}�=1,...,NS

and may consist, e.g., of
pulses or triangular functions. Expanding all the components of Jγ in terms of these functions leads to

Jγ(k) ≈
NS∑
�=1

Iγ(�)h�(k), (9)

where Iγ(�) =
〈
h�;Jγ

〉
S ∈ C

3, ∀� = 1, . . . , NS, (10)

with {h�}� functions from the bi-orthogonal set of H, i.e.,
〈
hk;h�

〉
S = δk,� for any k, �, with δk,� the

Kronecker symbol. The mean μI and the covariance CI of Iγ ∈ C
3NS are defined then as

μI(�) = E [Iγ(�)] =
∫
G

Iγ(�)fG(γ)dγ, (11)

CI(�, �′) = E
[
Iγ(�)I∗γ(�′)

]− μI(�)μI
∗(�′), (12)

where E [·] is the expectation operator with respect to γ, and fG is the probability density function
(PDF) of γ. In practice, the right-hand sides (rhs) of Eqs. (11)–(12) are computable by quadrature, as
discussed in Section 5.1.

Then, using the eigenvalues λ1 ≥ . . . ≥ λ3NS
≥ 0 and the eigenvectors {ϕn}n=1,...,3NS

of CI, a
Karhunen-Loève (KL) expansion is applied to Iγ , which leads to [6, p. 17]

Iγ(�) = μI(�) +
3NS∑
n=1

√
λnρn(γ)ϕn(�), ∀γ ∈ G, (13)

where, for any n ≥ 1, the normalized KL variables

ρn(γ) =
1√
λn
〈Iγ − μI;ϕn〉S (14)

are centered, with unit variances and mutually uncorrelated. Owing to the generally rapid decay of the
eigenvalues λn, the sum in Eq. (13) can be truncated to a low order NKL � 3NS and still yield a very
accurate approximation of Iγ in the L2 sense,

Iγ(�) ≈ μI(�) +
NKL∑
n=1

ρn(γ)
√
λnϕn(�). (15)
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By introducing ρ0 = 1, λ0 = 1, ϕ0 = μI and Jn(k) =
√
λn

3NS∑
�=1

ϕn(�)h�(k), one obtains a representation

of the form (7), i.e.,

Jγ(k) ≈ JNKL
γ (k) =

NKL∑
n=0

ρn(γ)Jn(k). (16)

To completely characterize the randomness of JNKL
γ , one needs to determine the joint probability

distribution Pρ of ρ = (ρ1, . . . , ρNKL
), which are mutually uncorrelated but not necessarily statistically

independent. Once Pρ is known, the statistical post-processing of Iγ becomes seamless. If Iγ depends
analytically on γ, Pρ can be determined either analytically or by computing an empirical distribution
at little numerical cost. In our case, where Iγ depends numerically on γ, we apply a polynomial-chaos
expansion to express ρ analytically in terms of γ and thereby ease the estimation of Pρ.

3.2.1. Polynomial-chaos Expansion

Since all the components of ρ have finite variances, they can be expanded on a basis of orthogonal
polynomials [6]. In addition to offering explicit analytical expressions of the random processes in terms
of γ, polynomials have the advantage of an exponential convergence for functions that are infinitely
differentiable. Hence,

ρ�(γ) =
∑

m∈Nd

c�(m)ψd
m (γ) , ∀� = 1, . . . , NKL, (17)

with c�(m) = E

[
ρ�(γ) ψd

m(γ)
]
. (18)

The polynomials {ψd
m(γ)}m are d-variate, with d the dimension of G, and mutually orthogonal with

respect to the inner product defined by fG, i.e., E
[
ψd

m(γ)ψd
m′(γ)

]
= δm

′
m , for any m,m′ ∈ N

d [23].
Eq. (18) shows that the computation of every c�(m) requires the availability of ρ�(γ) and a sampling
strategy in G. Trying to compute the PC coefficients c�(m) by quadrature breaks down rapidly as
the order of the polynomials ψd

m(γ) or the dimension of G increase. Higher PC orders are difficult to
compute due to the finite degree of polynomial exactness of the integration rules, while increasing the
dimension G leads to a curse of dimensionality. Instead, since Eq. (17) is a linear equation in c�(m),
it is solved for the PC coefficients using least-squares linear regression [24], as detailed in Section 4.1.
Moreover, since the coefficients {c�(m)}�,m are deterministic, they can be pre-computed, stored and
re-used for other incident fields.

For practical-implementation purposes, Eq. (17) is truncated to a finite order. We choose to apply
an isotropic truncation by using the same order NPC for all univariate polynomials and for all the KL
variables, i.e.,

ρ(γ) ≈
NPC∑
m=0

c(m)ψd
m (γ) =

Ncoeff∑
j=1

c[m(j)]ψd
m(j) (γ) , (19)

where c(m) = [c1(m), . . . , cNKL
(m)], Ncoeff = (NPC + 1)d is the number of PC coefficients, and the

multi-indices are numbered through the bijection

{1, . . . , Ncoeff} � j �−→m(j) ∈ {0, . . . , NPC}d.

3.2.2. KLPC Expansion of the Current Jγ

The KLPC approximation of Jγ , derived from Eqs. (19) and (16), reads

Jγ ≈
NKL∑
n=0

NPC∑
m=0

cn(m)ψd
m (γ)Jn. (20)



40 Sy, van Beurden, and Michielsen

This approximation captures the spatial dependency of Jγ deterministically via the eigenfunctions of
the covariance, and the randomness of Jγ analytically through the PC approximation of ρ. Since the
KLPC model is analytical, Pρ can be estimated by generating a large ensemble of samples of ρ at a
negligible numerical cost.

4. ADAPTIVE IMPLEMENTATION OF THE KLPC MODEL

With the stochastic model now established, two major aspects need to be considered, viz. 1) the
method for computing the PC expansion, and 2) the method for determining the orders of the KL and
PC expansions to ensure the accuracy of the resulting KLPC probability distribution.

4.1. Estimated Accuracy of the PC Expansion for a Fixed KL Order

Since Eq. (19) is linear in c(m), the PC coefficients are computed by least-squares (LS) linear regression.
For a given KL expansion of order NKL, the LS problem is formulated as

ΨPC(GReg) CKP = P(GReg), (21)

with GReg = {γk}k=1,...,NReg
⊂ G the regression set, ΨPC(GReg) =

[
ψd

m(j)(γi)
]
1≤i≤NReg, 1≤j≤Ncoeff

and CKP = (c�[m(j)])1≤�≤NKL;1≤j≤Ncoeff
the KL coefficients to be determined. The rhs P(GReg) =

[ρj(γi)]1≤i≤NReg, 1≤j≤NKL
is evaluated using Eq. (14). Solving Eq. (21) for CKP yields the estimate

CKP ≈
(
Ψt

PCΨPC

)† Ψt
PCP, (22)

with (†) the pseudo-inverse operator. Only one inversion of ΨPC is required for every set GReg. Increasing
NKL only increases the dimension of P(GReg) while leaving ΨPC(GReg) (to be inverted) unchanged.
Thus, our algorithm is rather insensitive to the number of KL variables, which is advantageous for the
parallelized computation of multiple PC spectra. To ensure the accuracy of the estimate, and given
our limit to the number of function evaluations (NMAX), we conservatively use 3Ncoeff samples in the
LS algorithm as long as 3Ncoeff ≤ NMAX, otherwise we use 2Ncoeff samples as long as 2Ncoeff ≤ NMAX.
Hence, the highest PC order that can be considered is

NPC,max =

⌊(
NMAX

2

)1/dim(G)

− 1

⌋
. (23)

The power of a PC approximation of order NPC, viz.

N3(c�) =

√√√√Ncoeff∑
j=1

|c�[m(j)]|2 (24)

is compared to 1, i.e., the theoretical variance of ρ�. Thus, given a tolerance εPC,max, the KL coefficients
that verify |N3(c�) − 1| ≤ εPC,max are assumed to be sufficiently accurately approximated by the PC
expansion.

4.2. Adaptive KLPC Decomposition

It is common practice to truncate the KL approximation based on the decay of the eigenvalues of CI.
For instance, given a threshold τKL > 0, one finds the order NL2 as the smallest integer such that∑
k>NL2

λk

/ ∑
k≥1

λk < τKL. While such an approach ensures the accurate restitution of the variance of

the observable to within τKL, it does not guarantee the accuracy of higher-order moments. To tackle
this issue, we propose an adaptive scheme that uses higher-order statistics of a canonical observable, as
illustrated by Fig. 3.
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MKL

→

MKL+1

If MKL> NL2

where for every PC order MPC, the PC
coeffs {cl} are computed by r egression

Build the canonical voltage Vtst(MKL)
Compute the CDFFtst(MKL) of Vtst(MKL)

MKL= NL2-1 Initialization

Compute the Kolmogorov-Smirnov statistic

If MKL=NL2

Ifk(MKL) >εmax2

Ifk(MKL) <= εmax2

Optimal KL order: NKS= MKL

Optimal PCorder:  NPC=

Figure 3. Flow-chart showing the adaptive determination of the orders of the KL and PC expansions.

First, the PC expansion is computed for MKL = NL2 KL variables. The accuracy of the PC
approximation of the coefficients c� is assessed by verifying that |N3(c�)− 1| ≤ εPC,max (see Eq. (24)),
for a given tolerance εPC,max. Next, the canonical variable

Vtst(MKL) =
MKL∑
n=1

√
λn|ρn(α)|2 ≥ 0 (25)

is considered. This variable can be regarded as the voltage induced on a wire on which flows the current

Jα − μJ by an incident field Etst =
MKL∑
n=1

ρ∗n(α)ϕ∗
n. The CDF of Vtst(MKL), denoted FMKL

, is readily

available via sampling the PC expansion. This procedure is then repeated for MKL ←MKL +1 and the
CDFs FMKL

and FMKL−1 are compared using the Kolmogorov-Smirnov (KS) statistic [25, p. 316]

κ(MKL) = sup
v≥0
|FMKL

(v)− FMKL−1(v)| . (26)

This quantifies the difference in higher-order statistics due to the increasing order of the KL expansion.
The value of MKL is incremented until κ(MKL) drops below a threshold εKS chosen by the modeler.
The resulting optimal KL order is denoted NKS. It is worth noting that, whenever MKL is increased,
the order of the PC expansion is increased until all MKL KL variables are accurately expanded following
the rationale of Section 4.1.

The numerical efficiency of this approach hinges on two choices that we make. First, since our
implementation of the PC-projection algorithm is insensitive to the number of KL variables being
computed (see Section 4.1), we simultaneously compute the PC projections of multiple KL variables
with the same regression set GReg. Our second choice is motivated by the fact that solving Eq. (21) every
time the KL or PC orders are increased can become numerically cumbersome. Instead, we compute
the PC spectra of a super-set of MKL,max KL variables simultaneously and verify the accuracy of the
subset of MKL variables of interest. Only when the MKL variables are not accurate in RMS sense (i.e.,
there is at least one � ∈ {1, . . . ,MKL} such that |N3(c�)− 1| > εPC,max) is the order NPC increased
and the PC projection recomputed, by LS regression, for the super-set of MKL,max KL variables. Both
choices strongly help the computational efficiency of this approach as will be shown in Section 5.2. To
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the best of the authors’ knowledge, this is a novel approach to perform KL and PC expansions jointly
and adaptively.

5. KLPC EXPANSION OF THE CURRENT DISTRIBUTION

We now apply our KLPC method to the stochastic thin-wire setup described in Section 2.1. We
recall that this problem involves three random parameters, viz. γ = (αx

1 , α
z
1, ξ), which are assumed

mutually statistically independent with uniform distributions in their ranges. To apply the spectral
reformulation at the core of our stochastic method, the domain S is sampled into the wave-vectors
ki,� = (2π/λ)ur(θi, φ�) (see Eq. (3)), with

θi = arccos
(
i

N1

)
, φ� =

π

2

(
�− 1
N1

− 1
)
, (27)

where i = 1, . . . , N1 − 1 and � = 1, . . . , 2N1 + 1 with N1 = 10. This results in a discrete sampling of
S into Ndir = (N1 − 1)(2N1 + 1) = 189 directions of incidence. The expansion and testing functions
({h�}� and {h�}�) over S are chosen as delta functions and the functions defined on S are approximated
by point-matching, i.e., Eβ(ki,�) and Jγ(ki,�) are represented by (3Ndir)-dimensional vectors. As an
indication, using the deterministic model with the axis of Wα subdivided into Nseg = 224 segments, the
computation of the voltage induced by a single plane wave (the superposition of all Ndir plane waves)
requires ∼ 218ms (∼ 340ms) on a 2.7 GHz computer with an Intel Core i7 processor. Thus, most of
the computational effort is devoted to the build-up of the impedance matrix in the MoM and its LU
factorization.

5.1. Second-Order Statistical Moments

The mean μI and covariance CI in Eqs. (11) and (12) are computed using a sparse-grid (SG) quadrature
rule, which is well suited to handle integrals over multi-dimensional domains and takes advantage of the
smoothness of the integrands [26]. As a reference, a Monte-Carlo (MC) algorithm is also used. Both
of these quadrature rules are known to mitigate the effects of the “curse of dimensionality”, i.e., the
exponentially-growing complexity as a function of the dimension of the sampling space. More advanced
sampling schemes, e.g., with adaptive dimensionality reduction, could also be considered [8, 9].

Since CI is a higher-order moment than μI, its computation is more demanding. Hence, the
convergence of the quadrature estimates is monitored through the relative variations of CI in terms of
its Fröbenius norm [27, p. 55], as the complexity of the quadrature increases. Table 1 shows the relative
error of CI versus the complexity Nquad of the quadrature rule. For both algorithms, CI can be obtained
with a relative accuracy better than 0.1% (even ∼ 0.01% for the SG rule) with ∼ 103 samples.

Table 1. Convergence of the Monte-Carlo and sparse-grid estimates of the covariance matrices CI

(random geometry) and CE (random incident field studied in Section 6.2). Number N−k of function
evaluations required to reach target accuracy εrel ≤ εmax = 10−k, and relative error εrel(N−k).

Computation of CI Computation of CE

Sparse grids Monte-Carlo Sparse grids Monte-Carlo
N−2 = Nquad(εrel ≤ 10−2) 441 129 137 513
εrel(N−2) 3.2 10−3 4.4 10−3 2.8 10−3 1.8 10−3

N−3 = Nquad(εrel ≤ 10−3) 1073 1025 401 1025
εrel(N−3) 1.2 10−4 8.2 10−4 1.7 10−5 7.5 10−4

Next, CI is spectrally decomposed using an eigenvalue solver (e.g., F02GCF of the LAPACK
library) [27, p. 393]. The numerical cost of this decomposition scales as ∼ (3Ndir)3 and requires ∼ 12 s.
The largest eigenvalues, normalized by the trace of CI, are listed in Table 2. The decay of the eigenvalues
is rapid since the first four eigenvalues capture more than τKL = 99.9% of the trace of CI, i.e., NL2 = 4.
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5.2. KLPC Decomposition of Jγ

Since all the random input parameters in this article follow a uniform probability distribution, it is
natural to consider a Legendre-uniform polynomial chaos [28]. The Legendre polynomials are obtained
recursively [23, p.333]. The orders of the KL and PC expansions are determined adaptively according

Table 2. Main eigenvalues of the covariance CI normalized by Tr(CI) (left two columns), and similarly
for CE (right two columns)

Eigenvalues of CI Eigenvalues of CE

with Tr(CI) = 1.652 (A ·m−1)2 with Tr(CE) = 5.827 10−3 (V ·m−1)2

k λ2
k/Tr(CI) 1−

k∑
�=1

λ2
�/Tr(CI) λ2

k/Tr(CE) 1−
k∑

�=1

λ2
�/Tr(CE)

1 9.810 10−1 1.903 10−2 5.912 10−1 4.088 10−1

2 1.571 10−2 3.324 10−3 4.085 10−1 2.776 10−4

3 2.069 10−3 1.255 10−3 2.142 10−4 6.338 10−5

4 1.236 10−3 1.860 10−5 4.754 10−5 1.585 10−5

5 1.207 10−5 6.523 10−6 1.288 10−5 2.965 10−6

6 4.951 10−6 1.572 10−6 2.863 10−6 1.020 10−7

7 8.582 10−7 7.138 10−7 4.170 10−8 6.031 10−8
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Figure 4. Variance- and KS-based adaptive determination of the KL and PC orders for Jγ : (a)
variances of the first 15 KL variables as a function of the order NPC of the PC expansion. (b) Value of
the K.S. statistic of Vtst for PC expansions that are accurate in terms of the variance.
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to the scheme described in Section 4.2. Thus, we simultaneously compute the PC spectra of a superset
consisting of the first MKL,max = 15 KL variables, i.e., more than the NL2 = 4 variables prescribed by
the decay of the eigenvalues. Since dim(G) = 3 (i.e., γ = (αx

1 , α
z
1, ξ)) and given our limit to the number

of function evaluations of NMAX = 2000, Eq. (23) indicates that the highest order of PC expansion we
can consider is NPC,max = 9.

The top part of Fig. 4 displays the variances of the KL variables after applying PC expansions
of increasing orders. The number Ncoeff of PC coefficients per KL variable is indicated in the legend,
as well as the number NReg of samples used to estimate the PC coefficients by LS regression. After
every PC expansion, the variance of each KL variable is compared to its theoretical value of 1, with a
maximum tolerance of εPC,max = 0.1. One could consider a tighter threshold at the expense of a larger
computational burden. With these criteria, according to Fig. 4(a), to estimate the first NL2 = 4 KL
variables accurately, one needs to use NPC = 3, since for NPC = 2 the variance of ρ1 is 1.145 and the
deviation from 1 is larger than εPC,max. Once the NL2 variables are accurately determined, they are
used to build the CDF of the canonical voltage Vtst(NL2), which is stored.

Next, the number of KL variables is increased to MKL = NL2 + 1 = 5. As the variances of
{ρ1, . . . , ρ5} are already accurate with NPC = 3, a new PC projection is not required and these PC
coefficients can be used to obtain the CDF of Vtst(MKL) and compute the corresponding KS statistic
κ(MKL), which is shown in Fig. 4(b) and equal to 3 10−3. Since this value is larger than the threshold
εKS = 10−3, more KL variables must be included in the analysis, and therefore MKL is increased to
NL2 + 2 = 6.

The process described in the previous paragraph is iterated and, as shown in Fig. 4, it converges
when NKS = 10 KL variables are included in the KL expansion, for which one needs a PC expansion
of order NPC = 6 (mainly due to the slow convergence of the PC expansion of ρ6). This amounts to
Ncoeff = 216 PC coefficients per KL variable, for which we use NReg = 650 random samples in the
least-squares estimation process.

With the KLPC expansion at hand, the probability distribution Pρ of the vector of dominant KL
variables ρ = (ρ1, . . . , ρNKS

) is approximated via Eq. (19) by generating a large set of samples of ρ at
minimal cost: for instance, computing 104 samples for ρ requires merely ∼ 2 s.

6. VOLTAGE INDUCED BY ARBITRARY INCIDENT FIELDS

The KLPC model is now used to estimate the PDF of the voltage induced at the port of the wire by
arbitrary combinations of plane waves with their supports in S. Using Eq. (2), the polarizations of the
incident fields are defined as the following Gaussian beams [29]

Eβ(ki, η) = ωβ(ki)E0 [ed(ki, η) + em(ki, η)] , ∀ki ∈ S, (28)

with E0 = 1V ·m−1, and η the polarization angle of the incident field. The unit vector ed(ki, η) indicates
the polarization of the “direct” plane wave, i.e., propagating along the direction ki, with a polarization
angle η. Similarly, em(ki, η) is a unit vector directed along the polarization of the mirror-imaged plane
wave induced by the presence of the PEC ground plane. The Gaussian weighting function ωβ is given
by

ωβ(ki) = ω0 exp

(
− 1

2σ0

|ki × k0|2
|ki · k0|2

)
, (29)

with k0 = (2π/λ)ur(θ0, φ0) the mean wave-vector, σ0 the width, and ω0 a normalizing factor such that
the integral of ωβ over S equals 1.

6.1. Deterministic Incident Fields

We first consider deterministic incident fields. This situation arises when assessing the effects
of production drifts on the performance of a device placed in various prescribed electromagnetic
environments. This is also relevant for remote sensing where, often, the characteristics of the source of
the incident field, e.g., a radar, are known, whereas geometrical or physical properties of the target are
unknown. The testing fields considered are
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• Field E1: a combination of parallel-polarized (η = 90◦) waves, centered around (θ0 = 60◦, φ0 =
−45◦), with a width σ0 = 0.2;

• Field E2: a combination of parallel-polarized (η = 90◦) waves, centered around (θ0 = 45◦, φ0 = 45◦),
with a width σ0 = 0.1;

• Field E3: a combination of perpendicular-polarized (η = 0◦) waves, centered around (θ0 = 45◦, φ0 =
0◦), with a width σ0 = 0.1.

The amplitudes of these fields are plotted in Fig. 5 (left column). For each of these incident fields,
the PDFs of the real and imaginary parts of the induced voltage V are determined using 1) a set of
Nemp = 104 random realizations of the deterministic model (i.e., by evaluating Eq. (4)) and taking
this set as a reference, 2) the L2-based KLPC expansion that uses NL2 = 4 KL variables, and 3) the
higher-order KL expansion that uses NKS = 10 KL variables. The results, plotted in Fig. 5 (middle and
right columns), show the varying levels of accuracy of the L2-KLPC model depending on the incident
field. For instance, with E1 or E3, the L2-KLPC expansion yields an accurate approximation of the
distribution of Re(V ). However, differences can be noted in the shapes of the PDF of Re(V ) induced by
E2, and the PDFs of Im(V ). In contrast, the higher-order KLPC approximation is accurate in terms
of the shape and the support of the PDFs of Re(V ) and Im(V ).

The KLPC approach is also advantageous for its computation time as shown in Table 3: once the
initial effort has been devoted to building the KLPC model (in ∼ 13mins), subsequent uses of this
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Figure 5. PDFs of the real (middle column) and imaginary (right column) parts of V induced by three
combinations of plane waves (the amplitudes of the incident fields are shown in the left column). The
PDFs are obtained from 104 samples of the initial model (emprical PDF as histogram), and from KLPC
expansions using NL2 (circles) and NKS (solid line) KL variables.
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Table 3. Detail of the computation time for the KLPC approach and the systematic use of the initial
model (i.e., without the KLPC expansion).

Computation time [s]
random Jγ random Eβ

Tpre,1: Computation of mean & covariance 324 258
Tpre,2: Eigen-decomposition of covariance 13 15
Tpre,3: PC projection of KL variables 249 66
Tpre,KLPC = Tpre,1 + Tpre,2 + Tpre,3 586 339
T1,KLPC: single KLPC evaluation 2.0 × 10−4

KLPC evaluations Nsamp samples ∼ Tpre,KLPC +NsampT1,KLPC

Nsamp = 105 610 362

Initial model without any expansion (1 sample) T1,NI ∼ 0.340
Nsamp samples ∼ Nsamp × T1,NI

Nsamp = 105 ∼ 9.4 hours

model come at very little numerical cost (∼ 2 s to compute the 104 voltage samples per incident field).
This is significantly less than the ∼ 30min required to compute the reference PDF for each incident
field via the deterministic model.

6.2. Stochastic Incident Field

The KLPC approach can also be used to characterize a random incident field and determine its
interaction with arbitrary receivers. This application is relevant, e.g., for mode-stirred-chamber
problems where the field in the test volume is best described as stochastic. Using Eqs. (28) and (29),
the stochastic incident field Eβ considered here has a random amplitude E0 ∈ [0.5, 3]V ·m−1, a random
polarization defined by the angle η0 ∈ [0◦, 90◦] and a Gaussian weighting of deterministic width σ0 = 3
but random mean direction of incidence given by θ0 ∈ [30◦, 60◦] and φ0 ∈ [−45◦, 45◦].

The vector β = (E0, θ0, φ0, η0) of uncertain parameters is assumed random with mutually
independent uniformly distributed components. Although the dimension of β is higher than the
dimension of γ = (α, ξ), the dependence of Eβ on β is significantly smoother than the dependence
of Jγ on γ at the resonance frequency f1 = 1997GHz. When computing the mean μE and covariance
CE by quadrature, the sparse-grid rule takes advantage of this smoothness, unlike the Monte-Carlo
rule, as shown in Table 1 (right two columns containing the results for CE). The smoothness of Eβ in
terms of β translates also in a rapid decay of the eigenvalues of CE (see Table 2, right two columns):
NL2 = 2 eigenvalues account for more than 99.9 % of the trace of CE. The KLPC expansion of Eβ is
done adaptively, with a canonical voltage Vtst defined using the eigenvectors and eigenvalues of CE in
Eq. (25). The resulting model comprises NKS = 7 KL variables expressed via a PC expansion of order
NPC = 3, i.e., Ncoeff = 81 PC coefficients per KL variable, computed using NLS = 244 samples in the
LS regression.

This KLPC model of the random Eβ is combined with the KLPC model of the random wire of
Section 5 to characterize the voltage induced by their mutual interaction. This problem involves seven
random parameters, viz. (αx, αz , ξ, E0, θ0, φ0, η0). The KLPC approximations of Jγ and Eβ are

Jγ ≈
NKS,J∑
n=0

ρJ,n(γ)
√
λJ,nϕJ,n, Eβ ≈

NKS,E∑
m=0

ρE,m(β)
√
λE,mϕE,m, (30)

with ρJ,0 = ρE,0 = λJ,0 = λE,0 = 1, ϕJ,0 = μI, ϕE,0 = μE, and {λJ,n, ϕJ,n}n≥1 and {λE,m, ϕE,m}m≥1

the eigen-systems of CI and CE, respectively. The orders of the KL expansions of Jα and Eβ are
NKS,J = 9 and NKS,E = 7, respectively. The KLPC model of the induced voltage is obtained by
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Figure 6. (a) PDF and (b) complementary CDF of the amplitude of the voltage induced by the random
incident field at the port of the random wire, as obtained from 105 samples (ref), the variance based
KLPC expansion [KL(L2)] and the adaptive higher-order KLPC expansion [KL(KS)].

inserting Eq. (30) in Eq. (4), i.e.,

V (γ, β) ≈ −
NKS,J∑
n=0

NKS,E∑
m=0

√
λJ,nλE,mGJ,E(m,n)ρJ,n(γ)ρE,m(β). (31)

The matrix GJ,E =
(〈ϕJ,n; ϕE,m〉S

)
n,m

captures the spatial correlation between the two sets of eigen-
functions, while the product

√
λJ,nλE,m acts as a physical weight and the KL variables carry the

randomness.
Another advantage of the Eq. (31) is that with merely NMC random realizations of γ and NMC

random realizations of β, one gets N2
MC random realizations of V , for the computation time required to

run the KLPC models 2NMC times. To keep the problem manageable, we only use 105 samples of the
deterministic model (computed in ∼ 8.5 hours) as a reference for comparisons against the distributions
of VL2 = VNL2,J,NL2,E

and VKS = VNKS,J,NKS,E
. Fig. 6(a) shows that VL2 already produces an accurate

approximation of the PDF of |V | despite an overshoot at the mode of the distribution, around 23 dBmV.
Since the distribution is plotted for |V | on a logarithmic scale, the shape of the distribution is the same
for the received power P = |V |2/2 induced at the port of the wire, albeit with a shifted support. As
a practical application of the statistics at hand, we determined the probability of exceedance of |V | by
analyzing the complementary CDF, i.e., 1−F|V |. Fig. 6(b) illustrates the limited error that is made to
estimate these probabilities of exceedance when using VKS rather than VL2.

7. COMPUTATION TIME

Besides its accuracy, the main advantage of the KLPC method is its computational efficiency for multiple
evaluations of the observable. Indeed, the KLPC computation time consists of a pre-computation stage
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that needs to be invested in only once, followed by evaluations of the thus obtained KLPC model. The
pre-computations start with the determination of the mean and covariance operators by quadrature,
the efficiency of which depends on the smoothness of the dependence of the integrand with respect to
the stochastic parameters. This is well illustrated in Tables 1 and 3, where the slower convergence of
the computation of CI compared to CE is due to the rougher behavior of Iγ versus γ caused by the
resonances.

The spectral decomposition of the covariance matrix requires ∼ 14 s for this problem and this
cost evolves with the cube of the dimension of the stochastic tensor, i.e., (3Ndir)3. Since the PC
decomposition of the dominant KL variables by linear regression involves a singular-value decomposition,
the complexity of this task evolves as ∼ N3

coeff = (NPC,1)3dim(G), where NPC,1 is the order of the
univariate PC expansions. All these factors contribute to a total pre-computation time Tpre,KLPC that
ranges from 339 s (∼ 5.6min) to 586 s (∼ 10min), as reported in Table 3.

After this numerical investment, the evaluations of the KLPC model of the observable merely
require T1,KLPC ∼ 0.2ms, which is three orders of magnitude smaller than the T1,NI ∼ 345ms required to
evaluate the observable via the initial model. For instance, generating an ensemble of Nsamp realizations
of the observable will requireNsampT1,NI seconds with the initial model, versus Tpre,KLPC+NsampT1,KLPC

seconds in the KLPC approach. Table 3 shows that, already with a single incident field, the KLPC
approach outperforms the brute-force approach when it comes to computing the distribution of the
induced voltage using Nsamp = 105 samples.

8. CONCLUSION

We have presented a method for characterizing stochastic linear observables that describe
electromagnetic interactions between a randomly shaped material object and arbitrary incident fields.
The stochastic approach hinges on the accurate computation of the mean and covariance of the
stochastic tensors by quadrature, the spectral decomposition of the covariance and the projection on
a set of orthogonal polynomials by linear regression. Even though the covariance operators of the
electromagnetic fields and current distributions are not compact in general, which is a prerequisite for
the spectral decomposition, our method uses a point-spectrum regularization to cast the problem in
terms of compact operators. A spectral reformulation of the observable allowed us to separate the effects
of the randomness of the scatterer from the randomness of the incident field.

Our implementation of the polynomial-chaos projection is optimized to compute multiple PC
projections simultaneously, which makes it a good candidate for parallelization. We have presented
an adaptive algorithm to determine the orders of the KL and PC expansions jointly and adaptively
using higher-order statistics. Such a rationale refines the common approach that truncates the KL
expansion using only the decay of the eigenvalues of the covariance. Our KLPC model provides a
complete statistical toolbox to approximate the probability distribution of the observable accurately.

The results obtained for the example of the voltage induced at the port of a stochastic thin-wire
frame by arbitrary combinations of plane waves show the high accuracy and numerical efficiency of
the proposed method, thereby justifying the numerical investment in the construction of the KLPC
model. While this article was illustrated by examples inspired from EMC, the stochastic rationale can
be applied straightforwardly to antenna-design and scattering problems, where linear observables are
also used. This semi-intrusive method is well suited for mode-stirred-chamber problems as it allows
to characterize the randomness of the chamber once and then use the KLPC model to obtain the
distribution of voltages induced at the ports of equipments under test.
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