Vol. 68
Latest Volume
All Volumes
PIERB 109 [2024] PIERB 108 [2024] PIERB 107 [2024] PIERB 106 [2024] PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2016-06-03
Bias Compensation in h /a/α Polarimetric SAR Decomposition and Its Implication for the Classification
By
Progress In Electromagnetics Research B, Vol. 68, 105-121, 2016
Abstract
Classification of land cover types is one important application of polarimetric synthetic aperture radar (PolSAR) remote sensing. There are numerous features that can be extracted from PolSAR images. Among them, eigenvalues λi, entropy H, alpha angle α, and anisotropy A are effective and popular tools for the analysis and quantitative estimation of the physical parameters. Nevertheless, the speckle noise appearing in PolSAR images reduces the accuracy of image classification. Consequently, it should be filtered correctly. Generally, filtering PolSAR data generate biased estimates of λi/H/A/α parameters. In this paper, we studied the effects of bias compensation on supervised and unsupervised PolSAR image classification. We applied the asymptotic quasi maximum likelihood estimator AQ-MLE and Yahia/Aguili's bias compensation methods. To improve the classification accuracies, we demonstrated that bias compensation must be associated with speckle reduction. The combination of the span with biased parameters reduced the effects of bias but did not eliminate it totally. Simulated and real data were used for validation.
Citation
Mohamed Yahia, Faten Khalfa, Marwa Chabir, and Taoufik Aguili, "Bias Compensation in h /a/α Polarimetric SAR Decomposition and Its Implication for the Classification," Progress In Electromagnetics Research B, Vol. 68, 105-121, 2016.
doi:10.2528/PIERB16033005
References

1. Oliver, C. and S. Quegan, Understanding Synthetic Aperture Radar Images, Artech House, 1998.

2. Cloude, S. and E. Pottier, "A review of target decomposition theorems in radar polarimetry," IEEE Trans. Geosci. Remote Sens., Vol. 34, No. 2, 498-518, Mar. 1996.
doi:10.1109/36.485127

3. Cloude, S. and E. Pottier, "An entropy based classification scheme for land applications of polarimetric SAR," IEEE Trans. Geosci. Remote Sens., Vol. 35, No. 1, 68-78, Jan. 1997.
doi:10.1109/36.551935

4. Park, S.-E. and W. M. Moon, "Unsupervised classification of scattering mechanisms in polarimetric SAR data using fuzzy logic in entropy and alpha plane," IEEE Trans. Geosci. Remote Sens., Vol. 45, No. 8, 2652-2664, Aug. 2007.
doi:10.1109/TGRS.2007.897691

5. Salehi, M., M. R. Sahebi, and Y. Maghsoudi, "Improving the accuracy of urban land cover classification using RADARSAT-2 PolSAR data," IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., Vol. 7, No. 4, 1394-1401, Apr. 2014.
doi:10.1109/JSTARS.2013.2273074

6. Bhattacharya, A. and R. Touzi, "Polarimetric SAR urban classification using the Touzi target scattering decomposition," Can. J. Remote Sens., Vol. 37, No. 4, 323-332, Aug. 2011.
doi:10.5589/m11-042

7. Antropov, O., Y. Rauste, H. Astola, T. Hame, and M. T. Hallikainen, "Land cover and soil type mapping from spaceborne PolSAR data at L-band with probabilistic neural network," IEEE Trans. Geosci. Remote Sens., Vol. 52, No. 9, 5256-5270, Sep. 2014.
doi:10.1109/TGRS.2013.2287712

8. Lee, J. S., M. R. Grunes, T. L. Ainsworth, L. Du, D. L. Schuler, and S. R. Cloude, "Unsupervised classification of polarimetric SAR imagery based on target decomposition and Wishart distribution," IEEE Trans. Geosci. Remote Sens., Vol. 37, No. 5, 2249-2258, Sep. 1999.
doi:10.1109/36.789621

9. Ferro-Famil, L., E. Pottier, and J. S. Lee, "Unsupervised classification of multifrequency and fully polarimetric SAR images based on the H/A/Alpha --- Wishart classifier," IEEE Trans. Geosci. Remote Sens., Vol. 39, No. 11, 2332-2342, Nov. 2001.
doi:10.1109/36.964969

10. Yahia, M. and Z. Belhadj, "Unsupervised classification of polarimetric SAR images using neural networks," Proc. IEEE Int. Geosci. Remote Sens. Symp., 203-205, Jul. 2003.

11. Dabboor, M., J. M. Collins, V. Karathanassi, and A. Braun, "An unsupervised classification approach for polarimetric SAR data based on the Chernoff distance for complex Wishart distribution," IEEE Trans. Geosci. Remote Sens., Vol. 51, No. 7, 4200-4213, Jul. 2013.
doi:10.1109/TGRS.2012.2227755

12. Cao, F., W. Hong, Y.Wu, and E. Pottier, "An unsupervised segmentation with an adaptive number of clusters using the SPAN/H=α=A space and the complex Wishart clustering for fully polarimetric SAR data analysis," IEEE Trans. Geosci. Remote Sens., Vol. 45, No. 11, 3454-3467, Nov. 2007.
doi:10.1109/TGRS.2007.907601

13. Zhang, Y., L. Wu, and G. Wei, "A new classifier for polarimetric SAR images," Progress In Electromagnetics Research, Vol. 94, 83-104, 2009.
doi:10.2528/PIER09041905

14. Gou, S., X. Qiao, X. Zhang, W.Wang, and F. Du, "Eigenvalue analysis-based approach for Pol-SAR image classification," IEEE Trans. Geosci. Remote Sens., Vol. 52, No. 2, 805-818, Feb. 2014.
doi:10.1109/TGRS.2013.2244096

15. Goodman, J. W., "Some fundamental properties of speckle," J. Opt. Soc. Amer., Vol. 66, No. 11, 1145-1150, Nov. 1976.
doi:10.1364/JOSA.66.001145

16. Lee, J. S., "Speckle analysis and smoothing of synthetic aperture radar images," Comput. Graph. Image Process., Vol. 17, 24-32, 1981.
doi:10.1016/S0146-664X(81)80005-6

17. Yahia, M. and Z. Belhadj, "Polarimetric SAR denoising uing adaptive prediction technique," Proc. IEEE Int. Geosci. Remote Sens. Symp., 4025-4027, Jul. 2006.

18. Lopez-Martinez, C., E. Pottier, and S. Cloude, "Statistical assessment of eigenvector-based target decomposition theorems in radar polarimetry," IEEE Trans. Geosci. Remote Sens., Vol. 43, No. 9, 2058-2074, Sep. 2005.
doi:10.1109/TGRS.2005.853934

19. Foucher, S., G. Farage, and G. B. Benie, "Application of bootstrap techniques for the estimation of target decomposition parameters in radar polarimetry," Proc. IEEE Int. Geosci. Remote Sens. Symp., 2224-2228, Jun. 2007.

20. Lee, J. S., T. Ainsworth, J. Kelly, and C. Lopez-Martinez, "Evaluation and bias removal of multi-look effect on entropy/alpha/anisotropy in polarimetric SAR decomposition," IEEE Trans. Geosci. Remote Sens., Vol. 46, No. 10, 3039-3052, Oct. 2008.
doi:10.1109/TGRS.2008.922033

21. Lopez-Martinez, C., A. Alonso-Gonzalez, and X. Fµabregas, "Perturbation analysis of eigenvector-based target decomposition theorems in radar polarimetry," IEEE Trans. Geosci. Remote Sens., Vol. 42, No. 4, 2081-2086, Apr. 2014.
doi:10.1109/TGRS.2013.2257802

22. Yahia, M. and T. Aguili, "Characterization and correction of multilook effects on eigendecomposition parameters in PolSAR images," IEEE Trans. Geosci. Remote Sens., Vol. 53, No. 9, 5237-5246, Sep. 2015.
doi:10.1109/TGRS.2015.2419717

23. Lee, J. S., M. R. Grunes, and G. de Grandi, "Polarimetric SAR speckle filtering and its implication for classification," IEEE Trans. Geosci. Remote Sens., Vol. 37, No. 5, 2363-2373, Sep. 1999.
doi:10.1109/36.789635

24. Bezdek, J. C., R. Ehrlich, and W. Full, "FCM: The fuzzy c-means clustering algorithm," Computer and Geosciences, Vol. 10, 191-203, 1984.
doi:10.1016/0098-3004(84)90020-7

25. Duquenoy, M., J. P. Ovarlez, L. Ferro-Famil, and E. Pottier, "Supervised classification of scatterers on SAR imaging based on incoherent polarimetric time-frequency signatures," European Signal Processing Conference, 764-768, Aug. 2009.

26. Lippmann, R. P., "An introduction to computing with neural nets," IEEE ASSP Magazine, 4-22, Apr. 1994.