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Bias Compensation in H/A/α Polarimetric SAR Decomposition

and Its Implication for the Classification

Mohamed Yahia*, Faten Khalfa, Marwa Chabir, and Taoufik Aguili

Abstract—Classification of land cover types is one important application of polarimetric synthetic
aperture radar (PolSAR) remote sensing. There are numerous features that can be extracted from
PolSAR images. Among them, eigenvalues λi, entropy H, alpha angle α, and anisotropy A are
effective and popular tools for the analysis and quantitative estimation of the physical parameters.
Nevertheless, the speckle noise appearing in PolSAR images reduces the accuracy of image classification.
Consequently, it should be filtered correctly. Generally, filtering PolSAR data generate biased estimates
of λi/H/A/α parameters. In this paper, we studied the effects of bias compensation on supervised
and unsupervised PolSAR image classification. We applied the asymptotic quasi maximum likelihood
estimator AQ-MLE and Yahia/Aguili’s bias compensation methods. To improve the classification
accuracies, we demonstrated that bias compensation must be associated with speckle reduction. The
combination of the span with biased parameters reduced the effects of bias but did not eliminate it
totally. Simulated and real data were used for validation.

1. INTRODUCTION

Synthetic Aperture Radar (SAR) is a powerful remote sensing tool for the observation and
characterization of the Earth’s surface. Originally, SAR systems produced single complex SAR images.
However, the actual SAR systems produce different SAR images of the same scene under some type of
diversity. In SAR Interferometry (InSAR) [1], different SAR images are acquired from slightly different
positions, permitting the gain of information about the Earth’s surface topography. In Polarimetric
SAR (PolSAR) [1], images are acquired using the polarization diversity. Therefore, PolSAR data give
information about the scattering properties of the imaged scene and the geometry of the scatterers on
it. The importance of PolSAR data has augmented in the last years, especially after the launch of
many spaceborne missions such as: Radarsat-2 (C-band), ALOS (L-band) and TerraSAR-X (X-band).
For every resolution cell (i.e., pixel), PolSAR data are generally represented by the scattering or the
covariance matrices.

Target Decompositions (TD) were developed to cluster the scattering or the covariance matrices
into basic scattering mechanisms. The TD theorems can be divided into two categories: coherent target
decompositions and incoherent target decompositions [2]. Among different approaches proposed in
the literature, the incoherent eigendecomposition TD represents one appropriate tool to perform data
interpretation of the distributed targets such as natural scatterers [2, 3]. Considering this approach,
Cloude and Pottier [3] defined entropy H, anisotropy A and alpha α angle. Entropy and anisotropy are
used to characterize the heterogeneity of the media scattering. Alpha angle is an indicator of the type
of the scattering mechanism.

Classification of land cover types is one important application of PolSAR remote sensing. Various
supervised and unsupervised techniques have been proposed. Many of the proposed techniques are
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based on physical scattering mechanisms obtained from TD methods. The most popular one is the
unsupervised classification technique proposed by Cloude and Pottier where H/α plane is divided into
eight classes using arbitrarily fixed thresholds of the boundaries [3]. The divided H/α plane is hybridized
with other classifier such as fuzzy c-means [4], support vector machines [5, 6], neural networks [7] and
Wishart classifier [8]. The last method was extended by introducing the anisotropy parameter A leading
to 16 initial classes [9]. The H/A/α parameters are able to describe the scattering mechanisms within
the resolution cell. Nevertheless, they do not contain information about the backscattering power. To
overcome this limitation, Yahia and Belhadj combined the diagonal elements the coherency matrix and
the H/A/α parameters to train the multilayer perceptron (MLP) neural network (NN) classifier [10].
The backscattering power (span) and H/A/α parameters were combined to initialize an unsupervised
complex Wishart classifier [11, 12]. In [13], Zhang et al. reduced the dimension of the span/H/A/α/
feature vector by using the principal component analysis to train a MLP NN. Since the eigenvalues
of Cloude-Pottier decomposition express the intensities of scattering mechanisms, they contain both
scattering mechanism and intensity information. Gou et al. exploited the eigenvalues probability density
functions (pdf) for Bayesian classification [14]. Thus, eigenvalues and H/A/α parameters are widely
used as feature vectors for various supervised and unsupervised classifiers.

Nevertheless, due to the coherent record of radar signals, SAR data are affected by the speckle noise
which is one of the major problems of the SAR imagery [15]. Therefore, for best image interpretation,
speckle noise must be reduced [16, 17]. This can be achieved by averaging the covariance matrices or
coherency matrices from neighboring pixels. This operation is known as multilook processing. However,
overaveraging degrades the spatial resolution, and insufficient averaging generates biased estimates [18].
Diverse bias removal procedures have been proposed in the literature. The asymptotic quasi maximum
likelihood estimator (AQ-MLE) of sample eigenvalues is derived from the eigenvalue pdfs [18]. Foucher et
al. [19] introduced a bootstrap technique to estimate eigenvalues, entropy, anisotropy, and α angle. The
bootstrap on eigenvalues gives similar bias correction to AQ-MLE [19]. Lee et al. [20] exploited the
linear dependence of the entropy bias on the entropy to its bias removal. This technique requires the
value of entropy for an infinite number of looks. This shortcoming was surmounted in [21]. However,
the main weaknesses of the previous techniques are their dependency on a precise estimation of the
independent averaging samples and their amplification of the noise variances [22]. Recently, Yahia
and Aguili theoretically demonstrated that the means and variances of the eigendecomposition can be
approximated by a linear rule [22]. Then, a linear regression was applied to compensate the biases.
In addition to its versatility, independency of the knowledge of the equivalent number of looks (ENL)
and high ability for bias compensation, Yahia/Aguili’s approach reduced the variance of noises on the
eigendecomposition parameters [22] which is favorable for target classification. In fact, Lee et al. studied
the implication of speckle filtering for the classification [23]. They found that speckle filtering of the
intensity images increased the performances of the classification. However, it is important to notice
that speckle filtering acts on the intensity images whereas bias compensation is a succeeding stage that
acts on the eigendecomposition parameters.

To our knowledge, the impact of bias compensation on the classification has not been investigated
quantitatively yet. López-Mart́ınez et al. stated [18]: “Nevertheless, the biases are no so critical for
classification applications, since in these cases, the effects of the biases can be mitigated by the fact that
other parameters, such as the span, are also considered”. However, many classification schemes used
only biased parameters as feature vectors such as H/α [2–9, 13], eigenvalues [14], etc. In these cases, the
effects of the biases cannot be mitigated with other parameters. In addition, when biased parameters
are combined with other parameters such as the span, it is important to quantify the mitigation of the
effects of biases.

In this paper, we studied the implication of bias elimination for supervised and unsupervised
classification. We selected H/α, λ1/λ2/λ3 and span/H/A/α as feature vectors. Particularly, in the
last case, we studied the mitigation of the biases in H/A/α by the use of the span parameter. This
paper is organized as follows. Section 2 introduces SAR polarimetry and the eigendecomposition of the
coherency matrix. In Section 3, we introduce the real and simulated PolSAR data used for validation.
Section 4 characterizes the multilook effects on eigendecomposition parameters. Section 5 deals with
bias elimination. In Section 6, we demonstrate the impacts of bias elimination on the classification.
Finally, Section 7 gives the conclusions of this paper.



Progress In Electromagnetics Research B, Vol. 68, 2016 107

2. H/A/α POLARIMETRIC TARGET DECOMPOSITION

PolSAR data are generally represented by 2 × 2S scattering matrix

S =
[

Shh Shv

Svh Svv

]
(1)

The subindices h and v represent the horizontal and vertical orthogonal polarizations, respectively.
In the general monostatic backscattering configuration, we have Shv = Svh. The scattering matrix can
be expressed in a vector Pauli basis:

k =
1√
2

[Shh + Svv, Shh − Svv , 2Shv]
T (2)

where T indicates transposition. The coherency matrix is:

T = E
{
k · k∗t} (3)

where E{·} indicates the statistical expectation, and ∗ denotes complex conjugation. T is 3×3 Hermitian
positive define matrix. Its eigendecomposition is [3]

T = U · Λ · U∗T (4)

Λ =

[
λ1 0 0
0 λ2 0
0 0 λ3

]
λ1>λ2>λ3

(5)

λi for i = 1, 2, 3, represent the true eigenvalues of T [3]. The 3 × 3 complex unitary matrix U
contains the eigenvectors.

ui =
[
cos(αi), sin(αi) cos(βi)ejδi , sin(αi) sin(βi)ejγi

]
. (6)

The H/A/α parameters are defined as follows [3]:

H =
3∑

i=1

pi log3 (pi) pi =
λi

λ1 + λ2 + λ3
(7)

A =
λ2 − λ3

λ2 + λ3
(8)

α =
3∑

i=1

piαi. (9)

The coherency matrix T is usually estimated by means of a spatial averaging as

T̂ =
1
N

∑
i

= 1Nkik
∗T
i (10)

where T̂ is the sample coherency matrix and N the number of independent samples included in the
average which is also known as the number of looks. The eigendecomposition of T is estimated through
the eigendecomposition of T̂ which defines the sample parameters λ̂i, Ĥ, Â and α̂.

3. SIMULATED AND REAL DATA

Both simulated and real data were used in this paper. The real test site was a PolSAR data of
Les-Landes, France (Fig. 1). It was a single-look complex scattering matrix acquired by NASA/JPL
polarimatric AIRSAR and was characterized by rectangular forested areas having different ages [9].
A, B, C, D and E zones were used for validation (see Fig. 1). We performed a Monte Carlo study
using an extensive data set containing 40 simulated coherency matrices obtained by the simulation
procedure used in [22]. For validation, we considered eight simulated targets (i.e., coherency matrices)
T1, T2, . . . , T8 (see Table 1). We selected one target from each scattering mechanism in Fig. 2(b) [3].
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Figure 1. span image (S2
hh + 2 ∗ S2

hv + S2
vv) of the test site “Les Landes”. Zones in boxes are the real

testing areas.

Table 1. Simulated coherency matrices used for validation.

T11 T12 T13 T22 T23 T33

T1 × 103 0.23 0.44 + 0.14i −0.06 − 0.003i 1.21 −0.16 + 0.03i 0.04
T2 × 103 0.97 0.52 − 0.51i 0.28 − 0.34i 0.69 0.39 − 0.002i 0.24
T3 × 103 0.38 −0.006 + 0.006i 0.03 − 0.02i 0.36 −0.01 − 0.01i 0.06
T4 × 103 0.009 −0.04 + 0.03i −0.004 + 0.02i 0.65 0.05 + 0.33i 0.89
T5 × 103 0.34 0.008 + 0.05i −0.01 + 0.007i 0.60 −0.02 + 0.08i 0.59
T6 × 103 0.18 0.008 + 0.01i −0.001 + 0.003i 0.13 0.0001 + 0.0001i 0.18
T7 × 103 0.41 −0.006 − 0.002i −0.004 − 0.006i 0.003 −0.003 − 0.016i 0.001
T8 × 103 0.41 −0.08 − 0.06i −0.036 − 0.02i 0.11 0.01 + 0.001i 0.081

4. CHARACTERIZATION OF MULTILOOK EFFECTS ON THE
EIGENDECOMPOSITION PARAMETERS

Multilook simulations for each target was processed for 3, 2 × 2, 3 × 3, 4 × 4, . . ., 10 × 10 independent
sample averages. Mean for each number of looks was computed using 2000 samples. We processed the
testing areas (A, . . . , E) by 2 × 4, 3 × 6, 4 × 8 and 5 × 10 boxcar filter. As demonstrated in [18–22],
we observe from Figs. 2(a) and (b) that sample entropy was always underestimated. For low entropy,
bias was insignificant. Bias increased as the entropy increased. Sample anisotropy Â was generally
overestimated. Bias increased with the respect decrease of the anisotropy. For high anisotropy, bias
was insignificant. For low anisotropy, bias was still important even after 10 × 10 looking. Regarding
sample alpha angle α̂, for low values (e.g., surface scattering), the mean alpha angle was overestimated,
for medium values (e.g., volume scattering), bias on α̂ was negligible, and for high values (e.g., urban
areas), α̂ was underestimated. In conclusion, we remark that the biases decreased the dynamic ranges
of the H/A/α parameters which was unfavorable for classification. Consequently, to increase the ability
to discern different classes, bias elimination was essential.

Figure 3 plots the variances versus the means of the eigenvalues for different numbers of looks. As
demonstrated in [18], we found that sample eigenvalue λ̂1 was always underestimated. Bias increased
with the increase of the entropy. For low entropy, bias was not significant. Therefore, sample eigenvalue
λ̂3 was always overestimated. Bias increased with the decrease of the anisotropy. The behavior of λ̂2 was
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(a) (b)

Figure 2. (a) H/A plane. Pointed and dashed lines: sample anisotropy versus sample entropy. (b)
H/α plane. Pointed and dashed lines: sample alpha versus sample entropy. Simulated data (Circles:
true values. Squares: true values of the simulated testing targets T1, T2, . . . , T8). Real data (Stars:
multilooked values. Triangles: true values obtained by averaging the coherency matrices in the testing
areas).

(a) (b)

(c)

Figure 3. Variances versus means. Simulated data (Points: sample values. Circles: true values). Real
data (Stars: multilooked values. Triangles: true values).



110 Yahia et al.

not predictable using a fixed number of looks. In fact, λ̂2 was generally underestimated, but for some
cases it could be overestimated. In addition, it has been demonstrated that these biases depend not only
on the number of averaged samples, but also on the difference between pairs of true eigenvalues [18, 21].
Since the behaviors of biases on eigenvalues are not simple as for H/A/α parameters, it seems that the
bias elimination does not have an apparent effect on classification.

5. BIAS COMPENSATION PROCEDURES

The aim of bias compensation procedures is to shift the pdf of the biased parameter to obtain a
mean equal to the true value. A variety of bias compensation procedures have been proposed in the
literature [18–22]. However, these techniques reduced the bias but altered the variances of sample values.
As established in [22], Yahia/Aguili’s technique decreased the noise whereas the techniques proposed
in [18–21] amplified it. Consequently, both bias and speckle variance influenced the performances of the
classification. In this paper, we applied particularly the AQ-MLE [18] and Yahia/Aguili’s method [22].
The AQ-MLE of sample eigenvalues are given by

λi = λ̂i − 1
N

3∑
k=1, k �=i

λ̂iλ̂k

λ̂i − λ̂k

+ O
(
N−1

)
(11)

In [22], Yahia and Aguili theoretically demonstrated that the means and variances of the
eigendecomposition parameters for various numbers of looks can be approximated as:

X̂i = ai

(
var

(
X̂i

))
+ bi (12)

where Xi is an eigendecompostion parameter. ai and bi are two constants that can be estimated using
first order interpolation for various numbers of looks. var(·) is the variance.

In fact, López-Mart́ınez et al. derived the expressions of means and variances of the sample
eigenvalues as [21]:

λ̂i = λi +
1
N

3∑
k=1, k �=i

λiλk

λi − λk
+ O

(
N−2

)
(13)

var
(
λ̂i

)
=

λ2
i

N
+ O

(
N−2

)
(14)

From Eqs. (14) and (15), we can derive the theoretic relation gathering means and variances of
sample eigenvalues as

λ̂i = λi +
var

(
λ̂i

)
λ2

i

3∑
k=1, k �=i

λiλk

λi − λk
= λi + var

(
λ̂i

) 3∑
k=1, k �=i

λk

λi (λi − λk)
(15)

Then
λ̂i = Aivar

(
λ̂i

)
+ Bi (16)

where

Ai =
3∑

k=1, k �=i

λk

λi (λi − λk)
(17)

and
Bi = λi (18)

Equation (16) which shows a perfect linearity between means and variances of eigenvalues confirms
the essence of the proposed bias compensation method.

Then, the Yahia/Aguili’s method employed the linear relation (12) between biased sample values
for various numbers of looks to reduce the bias on λ̂i, Ĥ, Â and α̂ [22]. The unbiased estimate of the
parameter X̂i is bi. Table 2 displays the performances of the AQ-MLE and Yahia/Aguili method.
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Table 2. Performances of the AQ-MLE and Yahia/Aguili’s methods.

AQ-MLE Yahia/Aguili
Require the estimation of the ENL Do not require the estimation of the ENL

Require only the sample values
for one number of looks

Require the sample values and the variances
for various number of looks

Applied to sample eigenvalues only Applied to all eigendecomposition parameters
Amplify the speckle noise Reduce the speckle noise

To apply Yahia/Aguili’s method, we averaged the simulated data of targets T1, T2, . . . , T8 using 4,
5, . . ., 25 looks. After that, first order interpolation (12) was applied using these data [22]. Real data
were processed by 7×7 boxcar filter. The ENL was about 25. The linear interpolation (12) was applied
using 8, 9, . . ., 49 sample averaging [22].

Figures 4(a), (b) and (c) show the initial and enhanced pdfs of the entropy, anisotropy and alpha
angle of the studied zones (i.e., A, B, C, D and E) using Yahia/Aguili’s method, respectively. We
observe that the enhanced pdfs were moved to the true values, and the noise was decreased which was
advantageous for classification. We also observe that the anisotropy was noisier than the entropy and
alpha angle, but it offered extra information to discern between (A, D) and (B, C) classes. Figs. 4(d),
(e) and (f) show examples of initial and enhanced pdfs of the eigenvalues using the AQ-MLE and

(a) (b)

(c) (d)
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(e) (f)

Figure 4. Original and compensated pdfs of sample eigendecomposition parameters.

Yahia/Aguili’s method. The AQ-MLE extended the pdfs (i.e., amplified the speckle noise) whereas
Yahia/Aguili’s method constricted them (i.e., decreased the speckle noise).

6. IMPACTS OF BIAS COMPENSATION PROCEDURES ON THE
CLASSIFICATION

In this section, we study the impacts of bias compensation procedures on the classification quantitatively.
Various classification techniques have been proposed in the literature. Nevertheless, in this paper, we
only concerned the effects of bias compensation on the classification and not the classifiers themselves.
For this reason, we chose the basic forms of well-known supervised and unsupervised classification
techniques that have been widely applied in the literature such as the H/α plane [3], fuzzy c-means
(FCM) [24] and multilayer perceptron (MLP) [10, 13, 25]. The classifiers were initialized for both biased
and unbiased inputs similarly. We used three feature vectors X1, X2 and X3 as inputs where

X1 = [ H α ] (19)
X2 = [ span H A α ] (20)
X3 = [ λ1 λ2 λ3 ] (21)

We selected feature vector X1 to study the effects of bias on the classification using H/α plane.
We used vector X2 to study the mitigation of the biases in H/A/α by the use of the span parameter.
Feature vector X3 was employed to study the effects of bias compensation of eigenvalues (using the
AQ-MLE and Yahia/Aguili’s methods) on the classification.

6.1. Unsupervised Classification

6.1.1. H/α Plane

The H/α unsupervised classification scheme proposed by Cloude and Pottier has been widely applied to
the analysis of PolSAR data. In fact, the principle of the classification is to divide the H/α plane into
eight zones representing the main natural scattering mechanisms (see Fig. 2(a)). The main advantage
of this unsupervised algorithm is that it provides terrain identification information where the most
important kinds of scattering media can be discriminated. In the same figure, we plotted the means of
sample (Ĥ, α̂) points of the simulated data for various numbers of looks. We observe that the entropy
bias has great effects on the classification especially for high values. Bias removal on entropy is crucial.
Since the decision borders for α angle were situated in the region where this parameter was unbiased,
it seems that bias on α angle does not change the classification results. However, from Fig. 5(a), we
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(a) (b)

Figure 5. H/α plane using simulated data, (a) before bias compensation, (b) after bias compensation.

(a) (b)

Figure 6. H/A plane using simulated data, (a) before bias compensation, (b) after bias compensation.

observe that the variance is important near the borders. Consequently, bias removal (with variance
minimization) in α angle is essential too.

Figures 5(a) and 6(a) represent the original H/α and H/A planes, and Figs. 5(b) and 6(b) represent
their compensated planes, respectively. We observe that Yahia/Aguili’s method compensated the bias
and reduced the noise. As a result, the overlapping between targets was reduced which was favorable
for classification.

Table 3 displays the classification matrix of simulated data using Cloude and Pottier procedure.
As observed, after bias compensation using Yahia/Aguili’s method, all classification accuracies were
increased significantly.

6.1.2. Fuzzy c-Means

The FCM algorithm, proposed by Bezdek et al. [24], is a partition based clustering algorithm. The
standard FCM objective function of partitioning an image into c clusters is

Jm =
c∑

k=1

n∑
i=1

(uki)
md2 (xi, νk) (22)
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Table 3. Classification accuracies (in percentage) of the H/α method (bold: after compensation).

Z1 Z2 Z3 Z4 Z5 Z6 Z7 Z8 Z9

Z1
67.6

88.9

2.2

0

0

0

30.1

11

0

0

0

0

0

0

0

0

0

0

Z2
19.7

13.52

65.8

84.2

0

0

9.7

1.9

4.6

0.2

0

0

0

0

0

0

0

0

Z3
0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

Z4
0

0

0

0

0

0

66.2

90.1

0

0

0

0

33.7

9.9

0

0

0

0

Z5
0

0

0

0

0

0

26.6

17.9

69.8

81.3

3.5

0.6

0

0

0

0

0

0

Z6
0

0

0

0

0

0

0

0

3.10

0

94.4

100

0

0

0

0

2.4

0

Z7
0

0

0

0

0

0

0

0

0

0

0

0

100

100

0

0

0

0

Z8
0

0

0

0

0

0

0

0

0

0

0

0

5.9

0.8

85.1

96.4

8.8

2.6

Z9
0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

100

100

where n denotes the number of data samples, which corresponds to the number of pixels in our case.
uki is the fuzzy membership of sample xi to cluster k satisfying

c∑
k=1

(uki) = 1, 0 ≤ uki ≤ 1, 0 ≤
n∑

i=1

(uki) ≤ 1

Parameter m > 1 is a weighting factor that controls the fuzziness of the membership function. In our
case m = 1.1. d2(xi, νk) is the distance measure that has many forms depending on the application. In
our study, we selected the basic form which is Euclidean distance. By minimizing Eq. (16) using the
Lagrange multiplier method, the updated equations of the membership uki and cluster center νk are

uki =
1

c∑
k=1

(
d2 (xi, νi)
d2 (xi, νk)

) 1
m−1

(23)

νk =

n∑
i=1

(uki)
m xi

n∑
i=1

(uki)
m

(24)

The FCM algorithm included the following steps:
i. Initialize the cluster centers vk. The same vector is used to classify original and compensated data.
ii. Update membership values ukj via Eq. (17).
iii. Update cluster centers vk via Eq. (18).
iv. Repeat steps ii and iii M times. In our case, dataset was introduced 10 times.

• Simulated data.
Table 4 gives the performances of the FCM using original and compensated data having X2 as
inputs. We observe that the majority of targets were discerned perfectly even by using the original
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Table 4. FCM classification accuracies (in percentage) of simulated data using X2 (bold: after
compensation).

T1 T2 T3 T4 T5 T6 T7 T8

T1
96.4

98.2

3.3

1.8

0.3

0

0

0

0

0

0

0

0

0

0

0

T2
7.1

5.5

92.6

94.2

0.2

0.2

0

0

0

0

0

0

0

0

0

0

T3
0

0

0

0

99.1

100

0

0

0

0

0.4

0

0

0

0.5

0

T4
0

0

0

0

0

0

100

100

0

0

0

0

0

0

0

0

T5
0

0

0

0

0

0

0

0

100

100

0

0

0

0

0

0

T6
0

0

0

0

0.5

0

0

0

0

0

99.3

100

0

0

0.2

0

T7
0

0

0

0

0

0

0

0

0

0

0.7

0

0

0

99.3

100

data. For the remaining targets, we observe that by using Yahia/Aguili’s method the performances
of the classification increased slightly. Table 5 shows the performances of the FCM using original
and compensated data (using AQ-MLE and Yahia/Aguili’s method) having X3 as feature vector.
We observe again that Yahia/Aguili’s method clearly increased the performances of the classification
whereas the AQ-MLE degraded some classification accuracies.

• Real data.
In this subsection, we classify real data (i.e., zones A, B, C, D and E). Table 6 gives the results
of the FCM using original and compensated data using X2 as input vector. As for simulated
data, we observe that by using Yahia/Aguili’s bias compensation method, classification accuracies
were increased even using the span as input parameter. Table 7 displays the performances of
the FCM using original and compensated data having X3 as feature vector. We observe again
that Yahia/Aguili’s method increased the performances of the classification whereas the AQ-MLE
degraded the classification accuracy of some classes.

6.2. Supervised Classification

6.2.1. Multilayer Perceptron Neural Network

MLP is a feedforward artificial neural network trained using a supervised training algorithm such as
back-propagation [25]. The MLP structure is described in Fig. 7. Our MLP was three layered. The
number of nodes of the input layer is equal to the length of the input feature vector. The number of
nodes in the output layer is equal to the number of classes. The number of nodes of the hidden-layer
can be estimated using [25]:

Nh =
√

Nin × No (25)
The MLP training includes the following steps:

i. Randomly set the values of weight matrices WE and WS.
ii. Randomly choose an input vector Xk = {x1k, x2k, . . . , xNink} from the dataset and set its desired

ouput Y k. k is the kth iteration.
iii. Compute the inputs and the outputs of nodes in Fig. 7 using:

ICk(j) =
Nin∑
i=1

xikWE
(k)
(j,i) (26)
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OCk(j) = tanh
(
ICk(j)

)
(27)

ISk(l) =
No∑
j=1

OCk(j)WS
(k)
(l,j) (28)

Sk(j) = tanh
(
ISk(j)

)
(29)

Table 5. FCM classification accuracies (in percentage) of simulated data using X3 (bold: Yahia/Aguili,
italic: AQ-MLE).

T1 T2 T3 T4 T5 T6 T7 T8

T1

73.6

88.6

76

10.8

9

12.2

0

0

0

14.6

1.7

10.6

0

0

0

0

0

0

0

0

0

0.8

0.4

1.1

T2

39.2

24.8

39.9

57.4

74.7

58.3

0

0

0

3.3

0.4

1.7

0

0

0

0

0

0

0

0

0

0

0.2

0

T3

0

0

0

0

0

0

95.12

99.1

96.2

0

0

0

0.4

0

0

3.3

0.6

2.6

0.2

0

0.2

0.8

0

0.8

T4

15.2

0

15

0.4

0

0.4

0.8

1.3

1.7

77.8

97.7

81.9

5.5

0.8

0.8

0

0

0

0

0

0

0

0

0

T5

0

0

0

0

0

0

1.7

0.2

0.2

2.6

0

3.5

95.5

99.8

95.3

0

0

0

0

0

0

0

0

0

T6

0

0

0

0

0

0

0.2

0

0.2

0

0

0

0

0

0

99.7

100

99.7

0

0

0

0

0

0

T7

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0.2

0

0

79.3

99.7

77.8

20.3

0.2

22.1

T8

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

2.4

2.4

1.1

43

1.7

47.2

54.5

95.7

51.6

Table 6. FCM classification accuracies (in percentage) of real data using X2 (bold: after compensation).

A B C D E

A
58.6

63.6

0

0

12.2

10.4

2.5

1.5

26.7

24.5

B
0

0

97.3

97.6

0

0

2.7

2.4

0

0

C
10.1

8.1

0

0

61

62.1

0

0

28.9

28

D
2.7

1.8

0.6

1.1

0

0

96.2

96.9

0.5

0.2

E
14.6

13.9

0

0

23.2

21.1

0.2

0

62

65
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Table 7. FCM classification accuracies (in percentage) of real data using X3 (bold: Yahia/Aguili
method, italic: AQ-MLE).

A B C D E

A

77.6

87.1

72.8

0

0

0

0

0

0

0

0

0

22.4

12.9

27.2

B

0

0

0

96

97

95.3

0

0

0

4

3

4.7

0

0

0

C

16.5

11

19.7

0

0

0

81.5

88.8

79.7

2

0.2

0.6

0

0

0

D

0.2

0.3

0.7

0

0

0

9.6

5.4

7.2

90.2

94.3

92.1

0

0

0

E

0

0

0

0

0

0

0

0

0

0

0

0

100

100

100

Table 8. MLP classification accuracies (in percentage) of simulated data using X2 (bold: after
compensation).

T1 T2 T3 T4 T5 T6 T7 T8

T1
100

100

0

0

0

0

0

0

0

0

0

0

0

0

0

0

T2
0

0

100

100

0

0

0

0

0

0

0

0

0

0

0

0

T3
0

0

0

0

98.9

100
0.4 0.3

0

0

0

0
0.4

T4
0

0

0

0

0

0

100

100

0

0

0

0

0

0

0

0

T5
0

0

0

0

0

0

0

0

100

100

0

0

0

0

0

0

T6
0

0

0

0
0.7

0

0

0

0

99.1

100

0

0
0.2

T7
0

0

0

0

0

0

0

0

0

0

0

0

100

100

0

0

T8
0

0

0

0

0

0

0

0

0

0
0.4 0

99.6

100

iv. Compute the error e = ‖Sk − Y k‖ and update WE and WS using the back-propagation training
algorithm [26]. ‖ · ‖ is the Euclidean distance.

v. Repeat steps iii and iv L times. In our case, the dataset was introduced 1000 times.

• Simulated data.
Table 8 shows the performances of the MLP using original and compensated data with X2 as
inputs. As expected, the classification accuracies were noticeably superior to those obtained
using unsupervised classification. We observe that by using Yahia/Aguili’s procedure, all targets
were perfectly discerned. Since the MLP produced high accuracy levels, the impacts of bias
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Input layer Hidden layer Output layer

1

2

i

Nin

1

j

Nh

x(i)

WE (j, i) WS (I, j)

IC(j)

IS(I)

OC(j)

1

I

No

O(I)

Figure 7. Architecture of the multi-layer perceptron.

Table 9. FCM classification accuracies (in percentage) of real simulated using X3 (bold: Yahia/Aguili,
italic: AQ-MLE).

T1 T2 T3 T4 T5 T6 T7 T8

T1

99.5

100

98.7

0.5

0

0.8

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0.4

T2

2.7

0.2

6

97.3

99.8

93.5

0

0

0

0

0

0.2

0

0

0

0

0

0

0

0

0

0

0

0.2

T3

0

0

0

0

0

0

96.7

99.8

97.4

2

0

1.6

0

0

0.2

0.4

0

0.2

0

0

0

0.9

0.2

0.6

T4

0

0

0

0

0

0

0.2

0.7

0.2

99.8

99.3

99.8

0

0

0

0

0

0

0

0

0

0

0

0

T5

0

0

0.2

0

0

0

0

0

0

0

0.2

0

100

99.8

99.8

0

0

0

0

0

0

0

0

0

T6

0

0

0

0

0

0

1.5

0

2.2

0

0

0

0

0

0

97.8

100

97.8

0

0

0

0.7

0

0

T7

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

100

100

100

0

0

0

T8

0.5

0

0

0

0

0

0

0

0

0

0

0

0

0

0

3.1

0.4

2.4

0

0

0.2

96.4

99.6

97.1

compensation were not very noticeable. Table 9 gives the performances of the MLP using original
and compensated data having X3 as feature vector. We observe again that Yahia/Aguili’s method
increased the performances of the classification whereas the by using AQ-MLE some classification
accuracies were degraded.

• Real data.
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Table 10 shows the performances of the MLP using original and compensated data with X2 as
inputs. As for simulated data, we observed that by using Yahia/Aguili’s bias compensation method,
all classification accuracies increased even when using the span as input parameter. However,
due to high performances obtained using the MLP, the improvements were not very noticeable.
Tables 11 represents the performances of the MLP using original and compensated data using X3

as feature vector. We observe again that Yahia/Aguili’s method increased the performances of the
classification whereas the AQ-MLE degraded the classification accuracies.

Supervised and unsupervised classifications obtained using simulated and real data show that
Yahia/Aguili’s bias compensation method increased the classification accuracies whereas the AQ-MLE
method degraded some classification results. As a consequence, to improve the classification accuracies,
bias compensation procedures must reduce the speckle noise.

By using feature vector X2, the classification accuracies obtained after bias compensation did not
increase significantly as when using X1 and X3. Consequently, when span is added to the biased
parameters (H/α/A), the classification performance is improved. Thus, in these cases, bias elimination
is not so critical but advantageous.

Table 10. MLP classification accuracies (in percentage) of real data using X2 (bold: after
compensation).

A B C D E

A
83.4

86.4

0

0

16.1

13.1

0

0

0.5

0.5

B
0

0

100

100

0

0

0

0

0

0

C
15.5

14

0

0

84

86

0

0

0

0

D
0

0

0

0

0

0

100

100

0

0

E
0.3

0

0

0

0

0

0

0

99.7

100

Table 11. MLP classification accuracies (in percentage) of real data using X3 (bold: Yahia/Aguili,
italic: AQ-MLE).

A B C D E

A

96.5

97.5

95

0

0

0

2.1

1.1

1.7

0

0

0

1.4

1.4

3.3

B

0

0

0

100

100

99

0

0

0

0

0

1

0

0

0

C

1.4

0.7

5

0

0

0

98.6

99.3

91.8

0

0

3.2

0

0

0

D

0

0

0.3

0

0

0.4

0

0

0

100

100

99.2

0

0

0.1

E

2

0.2

5

0

0

0

0

0

0

0

0

0

98

99.8

95
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7. CONCLUSION

In this paper, we studied the impacts of bias compensation on the classification. We considered both
supervised and unsupervised classification techniques. In particular, we studied the basic versions
of H/α plane, FCM and MLP classifiers because our aim consisted in studying only the effects of
bias compensation on the classification. Other more sophisticated versions or other classifiers can be
used. We demonstrated that bias elimination was necessary to increase the dynamic ranges of H/A/α
parameters, which implies more ability to discern different targets. Nevertheless, bias compensation
techniques introduced in the literature compensated the bias but changed the variances of the noise.
By applying Yahia/Aguili’s method which reduced the noise, both supervised and unsupervised
classification accuracies were increased because the overlapping between classes was reduced. Conversely,
by applying the AQ-MLE, the classification accuracies were decreased because the noise was amplified.
We verified that the combination of the span and biased parameters decreased the effects of bias but
did not eliminate them totally.
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